Publications by authors named "Luis A Lara-Pérez"

3 Publications

  • Page 1 of 1

Corrigendum to "The male ejaculate as inhibitor of female remating in two tephritid flies" [J. Insect Physiol. 88 (2016) 40-47].

J Insect Physiol 2020 Oct 7;126:104099. Epub 2020 Sep 7.

INBIOTECA, Universidad Veracruzana, Av. de las Culturas Veracruzanas 101, Col. E. Zapata, Xalapa, Veracruz, Mexico. Electronic address:

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jinsphys.2020.104099DOI Listing
October 2020

Seasonal shifts of arbuscular mycorrhizal fungi in Cocos nucifera roots in Yucatan, Mexico.

Mycorrhiza 2020 May 2;30(2-3):269-283. Epub 2020 Apr 2.

Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, Mexico.

The diversity and community structure of arbuscular mycorrhizal fungi (AMF) associated with coconut (Cocos nucifera) roots was evaluated by next generation sequencing (NGS) using partial sequences of the 18S rDNA gene and by spore isolation and morphological identification from rhizosphere soil. Root samples from six different Green Dwarf coconut plantations and from one organic plantation surrounded by tropical dry forest along the coastal sand dunes in Yucatan, Mexico, were collected during the rainy and dry seasons. In total, 14 root samples were sequenced with the Illumina MiSeq platform. Additionally, soil samples from the dry season were collected to identify AMF glomerospores. Based on a 95-97% similarity, a total of 36 virtual taxa (VT) belonging to nine genera were identified including one new genus-like clade. Glomus was the most abundant genus, both in number of VT and sequences. The comparison of dry and rainy season samples revealed differences in the richness and composition of AMF communities colonizing coconut roots. Our study shows that the main AMF genera associated with coconut tree roots in all samples were Glomus, Sclerocystis, Rhizophagus, Redeckera, and Diversispora. Based on glomerospore morphology, 22 morphospecies were recorded among which 14 were identified to species. Sclerocystis sinuosa, Sclerocystis rubiformis, Glomus microaggregatum, and Acaulospora scrobiculata were dominant in field rhizosphere samples. This is the first assessment of the composition of AMF communities colonizing coconut roots in rainy and dry seasons. It is of importance for selection of AMF species to investigate for their potential application in sustainable agriculture of coconut.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00572-020-00944-0DOI Listing
May 2020

The male ejaculate as inhibitor of female remating in two tephritid flies.

J Insect Physiol 2016 May 3;88:40-7. Epub 2016 Mar 3.

INBIOTECA, Universidad Veracruzana, Av. de las Culturas Veracruzanas 101, Col. E. Zapata, Xalapa, Veracruz, Mexico. Electronic address:

The inhibition of female receptivity after copulation is usually related to the quality of the first mating. Males are able to modulate female receptivity through various mechanisms. Among these is the transfer of the ejaculate composed mainly by sperm and accessory gland proteins (AGPs). Here we used the South American fruit fly Anastrepha fraterculus (where AGP injections inhibit female receptivity) and the Mexican fruit fly Anastrepha ludens (where injection of AGPs failed to inhibit receptivity) as study organisms to test which mechanisms are used by males to prevent remating. In both species, neither the act of copulation without ejaculate transfer nor sperm stored inhibited female receptivity. Moreover, using multiply mated sterile and wild males in Mex flies we showed that the number of sperm stored by females varied according to male fertility status and number of previous matings, while female remating did not. We suggest female receptivity in both flies is inhibited by the mechanical and/or physiological effect of the full ejaculate. This finding brings us closer to understanding the mechanisms through which female receptivity can be modulated.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jinsphys.2016.03.001DOI Listing
May 2016