Publications by authors named "Luigy Cordova Burgos"

2 Publications

  • Page 1 of 1

E-Cadherin/HMR-1 Membrane Enrichment Is Polarized by WAVE-Dependent Branched Actin.

J Dev Biol 2021 May 7;9(2). Epub 2021 May 7.

Department of Pathology and Laboratory Medicine, Rutgers-RWJMS, Piscataway, NJ 08854, USA.

Polarized epithelial cells adhere to each other at apical junctions that connect to the apical F-actin belt. Regulated remodeling of apical junctions supports morphogenesis, while dysregulated remodeling promotes diseases such as cancer. We have documented that branched actin regulator, WAVE, and apical junction protein, Cadherin, assemble together in developing embryonic junctions. If WAVE is missing in embryonic epithelia, too much Cadherin assembles at apical membranes, and yet apical F-actin is reduced, suggesting the excess Cadherin is not fully functional. We proposed that WAVE supports apical junctions by regulating the dynamic accumulation of Cadherin at membranes. To test this model, here we examine if WAVE is required for Cadherin membrane enrichment and apical-basal polarity in a maturing epithelium, the post-embryonic intestine. We find that larval and adult intestines have distinct apicobasal populations of Cadherin, each with distinct dependence on WAVE branched actin. In vivo imaging shows that loss of WAVE components alters post-embryonic E-cadherin membrane enrichment, especially at apicolateral regions, and alters the lateral membrane. Analysis of a biosensor for PI(4,5)P2 suggests loss of WAVE or Cadherin alters the polarity of the epithelial membrane. EM (electron microscopy) illustrates lateral membrane changes including separations. These findings have implications for understanding how mutations in WAVE and Cadherin may alter cell polarity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/jdb9020019DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8162361PMC
May 2021

RhoGAP RGA-8 supports morphogenesis in by polarizing epithelia.

Biol Open 2020 11 26;9(11). Epub 2020 Nov 26.

Department of Pathology and Laboratory Medicine, Rutgers - RWJMS, Piscataway, NJ 08854, USA

CDC-42 regulation of non-muscle myosin/NMY-2 is required for polarity maintenance in the one-cell embryo of CDC-42 and NMY-2 regulate polarity throughout embryogenesis, but their contribution to later events of morphogenesis are less understood. We have shown that epidermal enclosure requires the GTPase CED-10/Rac1 and WAVE/Scar complex, its effector, to promote protrusions that drive enclosure through the branch actin regulator Arp2/3. Our analysis here of RGA-8, a homolog of SH3BP1/Rich1/ARHGAP17/Nadrin, with BAR and RhoGAP motifs, suggests it regulates CDC-42, so that actin and myosin/NMY-2 promote ventral enclosure during embryonic morphogenesis. Genetic and molecular data suggest RGA-8 regulates CDC-42, and phenocopies the CDC-42 pathway regulators WASP-1/WSP-1 and the F-BAR proteins TOCA-1 and TOCA-2. Live imaging shows RGA-8 and WSP-1 enrich myosin and regulate F-actin in migrating epidermal cells during ventral enclosure. Loss of RGA-8 alters membrane recruitment of active CDC-42. We propose TOCA proteins and RGA-8 use BAR domains to localize and regenerate CDC-42 activity, thus regulating F-actin levels, through the branched actin regulator WSP-1, and myosin enrichment. RhoGAP RGA-8 thus polarizes epithelia, to promote cell migrations and cell shape changes of embryonic morphogenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1242/bio.056911DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7710025PMC
November 2020
-->