Publications by authors named "Ludmila Nayara Freitas Correia"

3 Publications

  • Page 1 of 1

Transcriptome Analysis of (Cactaceae) Reveals Metabolic Changes During Shoot Organogenesis Induction.

Front Plant Sci 2021 20;12:697556. Epub 2021 Aug 20.

Plant Biology Department/Laboratory of Plant Tissue Culture II-BIOAGRO, Federal University of Viçosa (UFV), Viçosa, Brazil.

is an endangered cactus highly valued for its ornamental properties. shoot production of this species provides a sustainable alternative to overharvesting from the wild; however, its propagation could be improved if the genetic regulation underlying its developmental processes were known. The present study generated transcriptome data, describing shoot organogenesis induction in . Total RNA was extracted from explants before (control) and after shoot organogenesis induction (treated). A total of 14,478 unigenes (average length, 520 bases) were obtained using Illumina HiSeq 3000 (Illumina Inc., San Diego, CA, USA) sequencing and transcriptome assembly. Filtering for differential expression yielded 2,058 unigenes. Pairwise comparison of treated vs. control genes revealed that 1,241 (60.3%) unigenes exhibited no significant change, 226 (11%) were downregulated, and 591 (28.7%) were upregulated. Based on database analysis, more transcription factor families and unigenes appeared to be upregulated in the treated samples than in controls. Expression of () and () genes, both of which were upregulated in treated samples, was further validated by real-time quantitative PCR (RT-qPCR). Differences in gene expression patterns between control and treated samples indicate substantial changes in the primary and secondary metabolism of after the induction of shoot organogenesis. These results help to clarify the molecular genetics and functional genomic aspects underlying propagation in the Cactaceae family.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fpls.2021.697556DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8417902PMC
August 2021

Irradiance-driven 20-hydroxyecdysone production and morphophysiological changes in Pfaffia glomerata plants grown in vitro.

Protoplasma 2021 Jan 25;258(1):151-167. Epub 2020 Sep 25.

Departamento de Biologia Vegetal/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.

Pfaffia glomerata possesses potential pharmacological and medicinal properties, mainly owing to the secondary metabolite 20-hydroxyecdysone (20E). Increasing production of biomass and 20E is important for industrial purposes. This study aimed to evaluate the influence of irradiance on plant morphology and production of 20E in P. glomerata grown in vitro. Nodal segments of accessions 22 and 43 (Ac22 and Ac43) were inoculated in culture medium containing MS salts and vitamins. Cultures were maintained at 25 ± 2 °C under a 16-h photoperiod and subjected to irradiance treatments of 65, 130, and 200 μmol m s by fluorescent lamps. After 30 days, growth parameters, pigment content, stomatal density, in vitro photosynthesis, metabolites content, and morphoanatomy were assessed. Notably, Ac22 plants exhibited 10-fold higher 20E production when cultivated at 200 μmol m s than at 65 μmol m s, evidencing the importance of light quantity for the accumulation of this metabolite. 20E production was twice as high in Ac22 as in Ac43 plants although both accessions responded positively to higher irradiance. Growth under 200 μmol m s stimulated photosynthesis and consequent biomass accumulation, but lowered carotenoids and anthocyanins. Furthermore, increasing irradiance enhanced the number of palisade and spongy parenchyma cells, enhancing the overall growth of P. glomerata. Graphical abstract.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00709-020-01558-1DOI Listing
January 2021

Accessions of Brazilian ginseng (Pfaffia glomerata) with contrasting anthocyanin content behave differently in growth, antioxidative defense, and 20-hydroxyecdysone levels under UV-B radiation.

Protoplasma 2019 Nov 17;256(6):1557-1571. Epub 2019 Jun 17.

Laboratório de Cultura de Tecidos Vegetais (LCTII), Departamento de Biologia Vegetal/BIOAGRO, Universidade Federal de Viçosa, Campus Universitário, Avenida Peter Henry Rolfs s/n, Viçosa, MG, 36570-900, Brazil.

Ultraviolet-B (UV-B) radiation is an elicitor of secondary metabolites in plant tissue culture, but the effects on 20-hydroxyecdysone (20E) are still unclear. The 20E may show biotechnological, pharmacological, medical, and agrochemical applicability. Here, we use Pfaffia glomerata, a medically important species, to understand the impacts of UV-B radiation on their physiological performance, the expression of key genes involved in the 20E biosynthesis, and the 20E content. Two accessions (A22 and A43) of plants 20 days old grown in vitro were exposed to 0 (control), 2 (6.84 kJ m), and 4 (13.84 kJ m) h UV-B radiation for 20 consecutive days. Our data showed that UV-B reduced glucose concentration in A22 and A43 under 4 h of exposure (29 and 30%, respectively), while sucrose concentration increased (32 and 57%, respectively). UV-B also differentially impacted the accessions (A22 and A43), where the A22 under 4 h of UV-B had reduced total dry weight (8%) and electron transport rate (31%); in contrast, A43 did not change. Also, only A22 had increased POD activity under 4 h of UV-B (66%), as well as increased gene expression of the 20E pathway and the 20E content under 2 and 4 h of UV-B in leaves (28 and 21%, respectively) and roots (16 and 13%, respectively). This differential performance to UV-B can be explained by the contrasting anthocyanin contents. Notably, A43 displayed 56% more anthocyanin to the former, a possible defense against UV-B. In conclusion, UV-B radiation is a potential elicitor for increasing 20E content in P. glomerata grown in vitro.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00709-019-01400-3DOI Listing
November 2019
-->