Publications by authors named "Ludmila I Khrustaleva"

5 Publications

  • Page 1 of 1

Tandem repeats of Allium fistulosum associated with major chromosomal landmarks.

Mol Genet Genomics 2017 Apr 1;292(2):453-464. Epub 2017 Feb 1.

Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Moscow, Russia.

Tandem repeats are often associated with important chromosomal landmarks, such as centromeres, telomeres, subtelomeric, and other heterochromatic regions, and can be good candidates for molecular cytogenetic markers. Tandem repeats present in many plant species demonstrate dramatic differences in unit length, proportion in the genome, and chromosomal organization. Members of genus Allium with their large genomes represent a challenging task for current genetics. Using the next generation sequencing data, molecular, and cytogenetic methods, we discovered two tandemly organized repeats in the Allium fistulosum genome (2n = 2C = 16), HAT58 and CAT36. Together, these repeats comprise 0.25% of the bunching onion genome with 160,000 copies/1 C of HAT58 and 93,000 copies/1 C of CAT36. Fluorescent in situ hybridization (FISH) and C-banding showed that HAT58 and CAT36 associated with the interstitial and pericentromeric heterochromatin of the A. fistulosum chromosomes 5, 6, 7, and 8. FISH with HAT58 and CAT36 performed on A. cepa (2n = 2C = 16) and A. wakegi (2n = 2C = 16), a natural allodiploid hybrid between A. fistulosum and A. cepa, revealed that these repeats are species specific and produced specific hybridization patterns only on A. fistulosum chromosomes. Thus, the markers can be used in interspecific breeding programs for monitoring of alien genetic material. We applied Non-denaturing FISH that allowed detection of the repeat bearing chromosomes within 3 h. A polymorphism of the HAT58 chromosome location was observed. This finding suggests that the rapid evolution of the HAT58 repeat is still ongoing.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00438-016-1286-9DOI Listing
April 2017

Towards a FISH-based karyotype of L. (Rosaceae).

Comp Cytogenet 2016 4;10(4):543-554. Epub 2016 Nov 4.

Center of Molecular Biotechnology, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Timiryazevskay str. 49, 127550, Moscow, Russia; Department of Genetics and Biotechnology, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Timiryazevskay str. 3, 127550, Moscow, Russia.

The genus Linnaeus, 1753 has important economic value in ornamental sector and many breeding activities are going on supported by molecular studies. However, the cytogenetic studies of rose species are scarce and mainly focused on chromosome counting and chromosome morphology-based karyotyping. Due to the small size of the chromosomes and a high frequency of polyploidy in the genus, karyotyping is very challenging for rose species and requires FISH-based cytogenetic markers to be applied. Therefore, in this work the aim is to establish a FISH-based karyotype for (Crépin, 1888), a rose species with several benefits for advanced molecular cytogenetic studies of genus (Kirov et al. 2015a). It is shown that FISH signals from 5S, 45S and an -type telomeric repeat are distributed on five (1, 2, 4, 5 and 7) of seven chromosome pairs. In addition, it is demonstrated that the interstitial telomeric repeat sequences (ITR) are located in the centromeric regions of four chromosome pairs. Using low hybridization stringency for ITR visualization, we showed that the number of ITR signals increases four times (1-4 signals). This study is the first to propose a FISH-based karyotype for the reliable identification of chromosomes. The possible origin of ITR loci is discussed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3897/CompCytogen.v10i4.9536DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5240508PMC
November 2016

Variation in Copy Number of Ty3/Gypsy Centromeric Retrotransposons in the Genomes of Thinopyrum intermedium and Its Diploid Progenitors.

PLoS One 2016 27;11(4):e0154241. Epub 2016 Apr 27.

Centre for Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Timiryazevskaya St. 49, 127550, Moscow, Russia.

Speciation and allopolyploidization in cereals may be accompanied by dramatic changes in abundance of centromeric repeated transposable elements. Here we demonstrate that the reverse transcriptase part of Ty3/gypsy centromeric retrotransposon (RT-CR) is highly conservative in the segmental hexaploid Thinopyrum intermedium (JrJvsSt) and its possible diploid progenitors Th. bessarabicum (Jb), Pseudoroegneria spicata (St) and Dasypyrum villosum (V) but the abundance of the repeats varied to a large extent. Fluorescence in situ hybridization (FISH) showed hybridization signals in centromeric region of all chromosomes in the studied species, although the intensity of the signals drastically differed. In Th. intermedium, the strongest signal of RT-CR probe was detected on the chromosomes of Jv, intermediate on Jr and faint on Js and St subgenome suggesting different abundance of RT-CR on the individual chromosomes rather than the sequence specificity of RT-CRs of the subgenomes. RT-CR quantification using real-time PCR revealed that its content per genome in Th. bessarabicum is ~ 2 times and P. spicata is ~ 1,5 times higher than in genome of D. villosum. The possible burst of Ty3/gypsy centromeric retrotransposon in Th. intermedium during allopolyploidization and its role in proper mitotic and meiotic chromosome behavior in a nascent allopolyploid is discussed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0154241PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4847875PMC
March 2017

High resolution physical mapping of single gene fragments on pachytene chromosome 4 and 7 of Rosa.

BMC Genet 2015 Jul 2;16:74. Epub 2015 Jul 2.

Department of Genetics, Biotechnology, Plant Breeding and Seed Science, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Timiryazevskay str.49, 127550, Moscow, Russia.

Background: Rosaceae is a family containing many economically important fruit and ornamental species. Although fluorescence in situ hybridization (FISH)-based physical mapping of plant genomes is a valuable tool for map-based cloning, comparative genomics and evolutionary studies, no studies using high resolution physical mapping have been performed in this family. Previously we proved that physical mapping of single-copy genes as small as 1.1 kb is possible on mitotic metaphase chromosomes of Rosa wichurana using Tyramide-FISH. In this study we aimed to further improve the physical map of Rosa wichurana by applying high resolution FISH to pachytene chromosomes.

Results: Using high resolution Tyramide-FISH and multicolor Tyramide-FISH, 7 genes (1.7-3 kb) were successfully mapped on pachytene chromosomes 4 and 7 of Rosa wichurana. Additionally, by using multicolor Tyramide-FISH three closely located genes were simultaneously visualized on chromosome 7. A detailed map of heterochromatine/euchromatine patterns of chromosome 4 and 7 was developed with indication of the physical position of these 7 genes. Comparison of the gene order between Rosa wichurana and Fragaria vesca revealed a poor collinearity for chromosome 7, but a perfect collinearity for chromosome 4.

Conclusions: High resolution physical mapping of short probes on pachytene chromosomes of Rosa wichurana was successfully performed for the first time. Application of Tyramide-FISH on pachytene chromosomes allowed the mapping resolution to be increased up to 20 times compared to mitotic metaphase chromosomes. High resolution Tyramide-FISH and multicolor Tyramide-FISH might become useful tools for further physical mapping of single-copy genes and for the integration of physical and genetic maps of Rosa wichurana and other members of the Rosaceae.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12863-015-0233-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4488978PMC
July 2015

Alien genes introgression and development of alien monosomic addition lines from a threatened species, Allium roylei Stearn, to Allium cepa L.

Theor Appl Genet 2012 May 11;124(7):1241-57. Epub 2012 Jan 11.

The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan.

To produce alien monosomic addition lines (AMALs) of Allium cepa (genomes CC, 2n = 2x = 16) carrying extrachromosomes from Allium roylei (RR, 2n = 2x = 16), reciprocal backcrossing of allotriploids (2n = 24, CCR) with diploids (2n = 16, CC) and selfing of a single allotriploid were carried out. The chromosome numbers in the BC(2)F(1) and BC(1)F(2) progenies ranged from 16 to 32. Forty-eight plants were recorded to possess 2n = 17 among a total of 169 plants in observation. Through the analyses of isozymes, expressed sequence tag (EST) markers, and karyotypes, all eight possible types of A. cepa-A. roylei monosomic addition lines (CC+1R-CC+8R) could be identified. Seven types of representative AMALs (without CC+2R) were used for the GISH analysis of somatic chromosomes. Except for CC+6R, all AMALs showed an entire (unrecombined) extrachromosome from A. roylei in the integral diploid background of A. cepa. A single recombination between A. cepa and A. roylei was observed on the extrachromosome in the remaining type. All alloplasmic AMALs possessing A. roylei cytoplasm showed high or complete pollen sterility. Only the autoplasmic CC+4R with A. cepa cytoplasm possessed relatively high pollen fertility. The bulbs of CC+4R displayed the distinct ovoid shape that discriminates them from spherical or oval ones in other AMALs. Downy mildew screening in the field showed higher resistance in A. roylei, a hypo-allotriploid (CCR-nR, 2n = 23), and an allotriploid (CCR, 2n = 24). Meanwhile, no complete resistance was found in some AMALs examined. This was the first trial toward the establishment of a complete set of A. cepa-A. roylei monosomic additions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00122-011-1783-5DOI Listing
May 2012
-->