Publications by authors named "Lucie Kubelová"

2 Publications

  • Page 1 of 1

Single Usage of a Kitchen Degreaser Can Alter Indoor Aerosol Composition for Days.

Environ Sci Technol 2017 Jun 10;51(11):5907-5912. Epub 2017 May 10.

Institute of Chemical Process Fundamentals of the CAS , Prague CZ-165 02, Czech Republic.

To the best of our knowledge, this study represents the first observation of multiday persistence of an indoor aerosol transformation linked to a kitchen degreaser containing monoethanol amine (MEA). MEA remaining on the cleaned surfaces and on a wiping paper towel in a trash can was able to transform ammonium sulfate and ammonium nitrate into (MEA)SO and (MEA)NO. This influence persisted for at least 60 h despite a high average ventilation rate. The influence was observed using both offline (filters, impactors, and ion chromatography analysis) and online (compact time-of-flight aerosol mass spectrometer) techniques. Substitution of ammonia in ammonium salts was observed not only in aerosol but also in particles deposited on a filter before the release of MEA. The similar influence of other amines is expected based on literature data. This influence represents a new pathway for MEA exposure of people in an indoor environment. The stabilizing effect on indoor nitrate also causes higher indoor exposure to fine nitrates.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.6b06050DOI Listing
June 2017

Enabling forbidden processes: quantum and solvation enhancement of nitrate anion UV absorption.

J Phys Chem A 2013 Dec 22;117(48):12868-77. Epub 2013 Nov 22.

Department of Physical Chemistry, Institute of Chemical Technology , Technická 5, 16628 Prague 6, Czech Republic.

We present simulated electronic absorption spectra of isolated and solvated nitrate anion in the UV region, focusing primarily on the absorption into the first absorption band around 300 nm. This weak absorption band in this spectral region is responsible for the generation of NOx in the polar areas or OH(•) radicals in the hydrosphere. The 300 nm absorption band is symmetrically strongly forbidden and coupling of at least two vibrational modes is needed to allow the transition in the isolated nitrate anion. Further symmetry breaking is provided by solvation. In this study we model the absorption spectra of nitrate-water clusters using the combined reflection principle path integral molecular dynamics (RP-PIMD) method. Condensed phase UV spectra are modeled within a cluster-continuum model. The calculated spectra are compared with experimental bulk phase measurements and reasonable agreement is found. We also provide a benchmarking of the DFT functionals to be used for a description of the electronically excited states of solvated nitrate anion.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp4098777DOI Listing
December 2013