Publications by authors named "Lucia S Mukhtarova"

25 Publications

  • Page 1 of 1

Detection of the First Epoxyalcohol Synthase/Allene Oxide Synthase (CYP74 Clan) in the Lancelet (, Chordata).

Int J Mol Sci 2021 Apr 29;22(9). Epub 2021 Apr 29.

Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111 Kazan, Russia.

The CYP74 clan cytochromes (P450) are key enzymes of oxidative metabolism of polyunsaturated fatty acids in plants, some Proteobacteria, brown and green algae, and Metazoa. The CYP74 enzymes, including the allene oxide synthases (AOSs), hydroperoxide lyases, divinyl ether synthases, and epoxyalcohol synthases (EASs) transform the fatty acid hydroperoxides to bioactive oxylipins. A novel CYP74 clan enzyme CYP440A18 of the Asian (Belcher's) lancelet (, Chordata) was biochemically characterized in the present work. The recombinant CYP440A18 enzyme was active towards all substrates used: linoleate and α-linolenate 9- and 13-hydroperoxides, as well as with eicosatetraenoate and eicosapentaenoate 15-hydroperoxides. The enzyme specifically converted α-linolenate 13-hydroperoxide (13-HPOT) to the oxiranyl carbinol (9,11,12,13,15)-11-hydroxy-12,13-epoxy-9,15-octadecadienoic acid (EAS product), α-ketol, 12-oxo-13-hydroxy-9,15-octadecadienoic acid (AOS product), and -12-oxo-10,15-phytodienoic acid (AOS product) at a ratio of around 35:5:1. Other hydroperoxides were converted by this enzyme to the analogous products. In contrast to other substrates, the 13-HPOT and 15-HPEPE yielded higher proportions of α-ketols, as well as the small amounts of cyclopentenones, -12-oxo-10,15-phytodienoic acid and its higher homologue, dihomo--12-oxo-3,6,10,15-phytotetraenoic acid, respectively. Thus, the CYP440A18 enzyme exhibited dual EAS/AOS activity. The obtained results allowed us to ascribe a name " EAS/AOS" (BbEAS/AOS) to this enzyme. BbEAS/AOS is a first CYP74 clan enzyme of Chordata species possessing AOS activity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms22094737DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8124189PMC
April 2021

Lipoxygenase pathway in model bryophytes: 12-oxo-9(13),15-phytodienoic acid is a predominant oxylipin in Physcomitrella patens.

Phytochemistry 2020 Dec 12;180:112533. Epub 2020 Oct 12.

Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111, Kazan, Russia. Electronic address:

The model moss Physcomitrella patens and liverwort Marchantia polymorpha possess all enzymatic machinery responsible for the initial stages of jasmonate pathway, including the active 13(S)-lipoxygenase, allene oxide synthase (AOS) and allene oxide cyclase (AOC). At the same time, the jasmonic acid is missing from both P. patens and M. polymorpha. Our GC-MS profiling of oxylipins of P. patens gametophores and M. polymorpha tissues revealed some distinctive peculiarities. The 15(Z)-cis-12-oxo-10,15-phytodienoic acid (12-OPDA) was the major oxylipin in M. polymorpha. In contrast, the 12-OPDA was only a minor constituent in P. patens, while another cyclopentenone 1 was the predominant oxylipin. Product 1 was identified by its MS, H-NMR, H-H-COSY, HSQC and HMBC data as 15(Z)-12-oxo-9(13),15-phytodienoic acid, i.e., the iso-12-OPDA. The corresponding C homologue, 2,3-dinor-iso-12-OPDA (2), have also been detected as a minor component in P. patens and a prominent product in M. polymorpha. Besides, the 2,3-dinor-cis-12-OPDA (3) was also present in M. polymorpha. Apparently, the malfunction of cyclopentenone reduction by the 12-OPDA reductase in P. patens and (to a lesser extent) in M. polymorpha leads to the isomerization of 12-OPDA and formation of specific cyclopentenones 1 and 2, which are uncommon in flowering plants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phytochem.2020.112533DOI Listing
December 2020

The CYP74B and CYP74D divinyl ether synthases possess a side hydroperoxide lyase and epoxyalcohol synthase activities that are enhanced by the site-directed mutagenesis.

Phytochemistry 2020 Nov 11;179:112512. Epub 2020 Sep 11.

Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. Box 30, Kazan, 420111, Russia. Electronic address:

The CYP74 family of cytochromes P450 includes four enzymes of fatty acid hydroperoxide metabolism: allene oxide synthase (AOS), hydroperoxide lyase (HPL), divinyl ether synthase (DES), and epoxyalcohol synthase (EAS). The present work is concerned with catalytic specificities of three recombinant DESs, namely, the 9-DES (LeDES, CYP74D1) of tomato (Solanum lycopersicum), 9-DES (NtDES, CYP74D3) of tobacco (Nicotiana tabacum), and 13-DES (LuDES, CYP74B16) of flax (Linum usitatissimum), as well as their alterations upon the site-directed mutagenesis. Both LeDES and NtDES converted 9-hydroperoxides of linoleic and α-linolenic acids to divinyl ethers colneleic and colnelenic acids (respectively) with only minorities of HPL and EAS products. In contrast, LeDES and NtDES showed low efficiency towards the linoleate 13-hydroperoxide, affording only the low yield of epoxyalcohols. LuDES exhibited mainly the DES activity towards α-linolenate 13-hydroperoxide (preferred substrate), and HPL activity towards linoleate 13-hydroperoxide, respectively. In contrast, LuDES converted 9-hydroperoxides primarily to the epoxyalcohols. The F291V and A287G mutations within the I-helix groove region (SRS-4) of LuDES resulted in the loss of DES activity and the acquirement of the epoxyalcohol synthase activity. Thus, the studied enzymes exhibited the versatility of catalysis and its qualitative alterations upon the site-directed mutagenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phytochem.2020.112512DOI Listing
November 2020

Epoxyalcohol synthase activity of the CYP74B enzymes of higher plants.

Biochim Biophys Acta Mol Cell Biol Lipids 2020 09 25;1865(9):158743. Epub 2020 May 25.

Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111 Kazan, Russia. Electronic address:

The CYP74B subfamily of fatty acid hydroperoxide transforming cytochromes P450 includes the most common plant enzymes. All CYP74Bs studied yet except the CYP74B16 (flax divinyl ether synthase, LuDES) and the CYP74B33 (carrot allene oxide synthase, DcAOS) are 13-hydroperoxide lyases (HPLs, synonym: hemiacetal synthases). The results of present work demonstrate that additional products (except the HPL products) of fatty acid hydroperoxides conversion by the recombinant StHPL (CYP74B3, Solanum tuberosum), MsHPL (CYP74B4v1, Medicago sativa), and CsHPL (CYP74B6, Cucumis sativus) are epoxyalcohols. MsHPL, StHPL, and CsHPL converted the 13-hydroperoxides of linoleic (13-HPOD) and α-linolenic acids (13-HPOT) primarily to the chain cleavage products. The minor by-products of 13-HPOD and 13-HPOT conversions by these enzymes were the oxiranyl carbinols, 11-hydroxy-12,13-epoxy-9-octadecenoic and 11-hydroxy-12,13-epoxy-9,15-octadecadienoic acid. At the same time, all enzymes studied converted 9-hydroperoxides into corresponding oxiranyl carbinols with HPL by-products. Thus, the results showed the additional epoxyalcohol synthase activity of studied CYP74B enzymes. The 13-HPOD conversion reliably resulted in smaller yields of the HPL products and bigger yields of the epoxyalcohols compared to the 13-HPOT transformation. Overall, the results show the dualistic HPL/EAS behaviour of studied CYP74B enzymes, depending on hydroperoxide isomerism and unsaturation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbalip.2020.158743DOI Listing
September 2020

Catalysis by allene oxide synthases (CYP74A and CYP74C): Alterations by the Phe/Leu mutation at the SRS-1 region.

Phytochemistry 2020 Jan 10;169:112152. Epub 2019 Oct 10.

Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. Box 30, Kazan, 420111, Russia. Electronic address:

The CYP74 family of cytochromes P450 includes four fatty acid hydroperoxide metabolizing enzymes: allene oxide synthase (AOS), hydroperoxide lyase (HPL), divinyl ether synthase, and epoxyalcohol synthase (EAS). All P450s have six substrate recognition sites (SRSs) in their structures. Some CYP74 mutations in SRSs leading to their interconversions including substitutions in "F/L toggle" (SRS-1 region) were reported before. For further elucidation of the role of this site in CYP74 catalysis, the effect of Phe/Leu mutation on the specificity of selected AOSs was studied in the present work. Mutant forms of ZmAOS1 (CYP74A19, Zea mays), LeAOS3 (CYP74C3, Lycopersicon esculentum), and PpAOS2 (CYP74A8, Physcomitrella patens) acquired partial EAS activity. Mutant forms of ZmAOS1 and PpAOS2 possessed additional HPL activities. The results validate the significance of the "F/L toggle" as a catalytic determinant of CYP74s, as well as the importance of the conserved Phe at this site for the AOS catalysis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phytochem.2019.112152DOI Listing
January 2020

Plant hydroperoxide-cleaving enzymes (CYP74 family) function as hemiacetal synthases: Structural proof of hemiacetals by NMR spectroscopy.

Biochim Biophys Acta Mol Cell Biol Lipids 2018 10 20;1863(10):1316-1322. Epub 2018 Aug 20.

Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111, Russia. Electronic address:

Hydroperoxide lyases (HPLs) of the CYP74 family (P450 superfamily) are widely distributed enzymes in higher plants and are responsible for the stress-initiated accumulation of short-chain aldehydes. Fatty acid hydroperoxides serve as substrates for HPLs; however, details of the HPL-promoted conversion are still incompletely understood. In the present work, we report first time the micropreparative isolation and the NMR structural studies of fatty acid hemiacetal (TMS/TMS), the short-lived HPL product. With this aim, linoleic acid 9(S)‑hydroperoxide (9(S)‑HPOD) was incubated with recombinant melon hydroperoxide lyase (CmHPL, CYP74C2) in a biphasic system of water/hexane for 60 s at 0 °C, pH 4.0. The hexane layer was immediately decanted and vortexed with a trimethylsilylating mixture. Analysis by GC-MS revealed a major product, i.e. the bis-TMS derivative of a hemiacetal which was conclusively identified as 9‑hydroxy‑9‑[(1'E,3'Z)‑nonadienyloxy]‑nonanoic acid by NMR-spectroscopy. Further support for the hemiacetal structure was provided by detailed NMR-spectroscopic analysis of the bis-TMS hemiacetal generated from [C]9(S)‑HPOD in the presence of CmHPL. The results obtained provide incontrovertible evidence that the true products of the HPL group of enzymes are hemiacetals, and that the short-chain aldehydes are produced by their rapid secondary chain breakdown. Therefore, we suggest replacing the name "hydroperoxide lyase", which does not reflect the factual isomerase (intramolecular oxidoreductase) activity, with "hemiacetal synthase" (HAS).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbalip.2018.08.011DOI Listing
October 2018

Detection of the first higher plant epoxyalcohol synthase: Molecular cloning and characterisation of the CYP74M2 enzyme of spikemoss Selaginella moellendorffii.

Phytochemistry 2018 Dec 6;156:73-82. Epub 2018 Sep 6.

Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan, 420111, Russia. Electronic address:

The CYP74M2 gene of a model plant, the spikemoss Selaginella moellendorffii Hieron, was cloned and the catalytic properties of corresponding recombinant protein were studied. The recombinant CYP74M2 protein was active towards 13-hydroperoxides of linoleic and a-linolenic acids (13-HPOD and 13-HPOT, respectively). In contrast to previously studied CYP74M1 and CYP74M3, which possessed the divinyl ether synthase activity, CYP74M2 behaved as a dedicated epoxyalcohol synthase (EAS). For instance, the 13-HPOD was converted to three epimeric oxiranyl carbinols 1-3 (formed at a ratio ca. 4:2:1), namely the (11R,12S,13S), (11R,12R, 13S), and (11S,12S,13S) epimers of (9Z)-11-hydroxy-12,13-epoxy-9-octadecenoic acid. Besides these products, a minority of oxiranyl vinyl carbinols like (10E)-11-hydroxy-12,13-epoxy-9-octadecenoic acid was formed. The 13-HPOT conversion by CYP74M2 afforded two stereoisomers of 11-hydroxy-12,13-epoxy-9,15-octadecadienoic acid. Individual oxylipins were purified by HPLC and finally identified by their NMR data, including the H-NMR, 2D-COSY, HSQC, and HMBC. Thus, the CYP74M2 is the dedicated epoxyalcohol synthase. To our knowledge, no enzymes of this type have been detected in higher plants yet.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phytochem.2018.08.010DOI Listing
December 2018

Double function hydroperoxide lyases/epoxyalcohol synthases (CYP74C) of higher plants: identification and conversion into allene oxide synthases by site-directed mutagenesis.

Biochim Biophys Acta Mol Cell Biol Lipids 2018 Apr 8;1863(4):369-378. Epub 2018 Jan 8.

Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111, Russia. Electronic address:

The CYP74C subfamily of fatty acid hydroperoxide transforming enzymes includes hydroperoxide lyases (HPLs) and allene oxide synthases (AOSs). This work reports a new facet of the putative CYP74C HPLs. Initially, we found that the recombinant CYP74C13_MT (Medicago truncatula) behaved predominantly as the epoxyalcohol synthase (EAS) towards the 9(S)-hydroperoxide of linoleic acid. At the same time, the CYP74C13_MT mostly possessed the HPL activity towards the 13(S)-hydroperoxides of linoleic and α-linolenic acids. To verify whether this dualistic behaviour of CYP74C13_MT is occasional or typical, we also examined five similar putative HPLs (CYP74C). These were CYP74C4_ST (Solanum tuberosum), CYP74C2 (Cucumis melo), CYP74C1_CS and CYP74C31 (both of Cucumis sativus), and CYP74C13_GM (Glycine max). All tested enzymes behaved predominantly as EAS toward 9-hydroperoxide of linoleic acid. Oxiranyl carbinols such as (9S,10S,11S,12Z)-9,10-epoxy-11-hydroxy-12-octadecenoic acids were the major EAS products. Besides, the CYP74C31 possessed an additional minor 9-AOS activity. The mutant forms of CYP74C13_MT, CYP74C1_CS, and CYP74C31 with substitutions at the catalytically essential domains, namely the "hydroperoxide-binding domain" (I-helix), or the SRS-1 domain near the N-terminus, showed strong AOS activity. These HPLs to AOSs conversions were observed for the first time. Until now a large part of CYP74C enzymes has been considered as 9/13-HPLs. Notwithstanding, these results show that all studied putative CYP74C HPLs are in fact the versatile HPL/EASs that can be effortlessly mutated into specific AOSs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbalip.2018.01.002DOI Listing
April 2018

Identification of CYP443D1 (CYP74 clan) of Nematostella vectensis as a first cnidarian epoxyalcohol synthase and insights into its catalytic mechanism.

Biochim Biophys Acta Mol Cell Biol Lipids 2017 Oct 1;1862(10 Pt A):1099-1109. Epub 2017 Aug 1.

Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111, Russia. Electronic address:

The CYP74 clan enzymes are responsible for the biosynthesis of numerous bioactive oxylipins in higher plants, some Proteobacteria, brown and green algae, and Metazoa. A novel putative CYP74 clan gene CYP443D1 of the starlet sea anemone (Nematostella vectensis, Cnidaria) has been cloned, and the properties of the corresponding recombinant protein have been studied in the present work. The recombinant CYP443D1 was incubated with the 9- and 13-hydroperoxides of linoleic and α-linolenic acids (9-HPOD, 13-HPOD, 9-HPOT, and 13-HPOT, respectively), as well as with the 9-hydroperoxide of γ-linolenic acid (γ-9-HPOT) and 15-hydroperoxide of eicosapentaenoic acid (15-HPEPE). The enzyme was active towards all C-hydroperoxides with some preference to 9-HPOD. In contrast, 15-HPEPE was a poor substrate. The CYP443D1 specifically converted 9-HPOD into the oxiranyl carbinol 1, (9S,10R,11S,12Z)-9,10-epoxy-11-hydroxy-12-octadecenoic acid. Both O atoms from [O-hydroperoxy]9-HPOD were virtually quantitatively incorporated into product 1. Thus, the CYP443D1 exhibited epoxyalcohol synthase (EAS) activity. The O labelling data demonstrated that the reaction mechanism included three sequential steps: (1) hydroperoxyl homolysis, (2) oxy radical rearrangement into epoxyallylic radical, (3) hydroxyl rebound, resulting in oxiranyl carbinol formation. The 9-HPOT and γ-9-HPOT were also specifically converted into the oxiranyl carbinols, 15,16- and 6,7-dehydro analogues of compound 1, respectively. The 13-HPOD was converted into erythro- and threo-isomers of oxiranyl carbinol, as well as oxiranyl vinyl carbinols. The obtained results allow assignment of the name "N. vectensis EAS" (NvEAS) to CYP443D1. The NvEAS is a first EAS detected in Cnidaria.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbalip.2017.07.015DOI Listing
October 2017

Epoxyalcohol synthase of Ectocarpus siliculosus. First CYP74-related enzyme of oxylipin biosynthesis in brown algae.

Biochim Biophys Acta Mol Cell Biol Lipids 2017 Feb 15;1862(2):167-175. Epub 2016 Nov 15.

Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111, Russia. Electronic address:

Enzymes of CYP74 family play the central role in the biosynthesis of physiologically important oxylipins in land plants. Although a broad diversity of oxylipins is known in the algae, no CYP74s or related enzymes have been detected in brown algae yet. Cloning of the first CYP74-related gene CYP5164B1 of brown alga Ectocarpus siliculosus is reported in present work. The recombinant protein was incubated with several fatty acid hydroperoxides. Linoleic acid 9-hydroperoxide (9-HPOD) was the preferred substrate, while linoleate 13-hydroperoxide (13-HPOD) was less efficient. α-Linolenic acid 9- and 13-hydroperoxides, as well as eicosapentaenoic acid 15-hydroperoxide were inefficient substrates. Both 9-HPOD and 13-HPOD were converted into epoxyalcohols. For instance, 9-HPOD was turned primarily into (9S,10S,11S,12Z)-9,10-epoxy-11-hydroxy-12-octadecenoic acid. Both epoxide and hydroxyl oxygen atoms of the epoxyalcohol were incorporated mostly from [O]9-HPOD. Thus, the enzyme exhibits the activity of epoxyalcohol synthase (EsEAS). The results show that the EsEAS isomerizes the hydroperoxides into epoxyalcohols via epoxyallylic radical, a common intermediate of different CYP74s and related enzymes. EsEAS can be considered as an archaic prototype of CYP74 family enzymes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbalip.2016.11.007DOI Listing
February 2017

Oxylipin biosynthesis in spikemoss Selaginella moellendorffii: Molecular cloning and identification of divinyl ether synthases CYP74M1 and CYP74M3.

Biochim Biophys Acta 2016 Apr 9;1861(4):301-9. Epub 2016 Jan 9.

Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111, Russia. Electronic address:

Nonclassical P450s of CYP74 family control the secondary conversions of fatty acid hydroperoxides to bioactive oxylipins in plants. At least ten genes attributed to four novel CYP74 subfamilies have been revealed by the recent sequencing of the spikemoss Selaginella moellendorffii Hieron genome. Two of these genes CYP74M1 and CYP74M3 have been cloned in the present study. Both recombinant proteins CYP74M1 and CYP74M3 were active towards the 13(S)-hydroperoxides of α-linolenic and linoleic acids (13-HPOT and 13-HPOD, respectively) and exhibited the activity of divinyl ether synthase (DES). Products were analyzed by gas chromatography-mass spectrometry. Individual oxylipins were purified by HPLC and finally identified by their NMR data, including the (1)H NMR, 2D-COSY, HSQC and HMBC. CYP74M1 (SmDES1) specifically converted 13-HPOT to (11Z)-etherolenic acid and 13-HPOD to (11Z)-etheroleic acid. CYP74M3 (SmDES2) turned 13-HPOT and 13-HPOD mainly to etherolenic and etheroleic acids, respectively. CYP74M1 and CYP74M3 are the first DESs detected in non-flowering plants. The obtained results demonstrate the existence of the sophisticated oxylipin biosynthetic machinery in the oldest taxa of vascular plants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbalip.2016.01.001DOI Listing
April 2016

Stereospecific biosynthesis of (9S,13S)-10-oxo-phytoenoic acid in young maize roots.

Biochim Biophys Acta 2015 Sep 22;1851(9):1262-70. Epub 2015 May 22.

Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan, 420111 Russia. Electronic address:

Profiling of oxylipins from young maize roots revealed complex patterns of products mainly originating from the combined actions of 9- and 13-lipoxygenases and allene oxide synthase (AOS). A distinctive feature was the high content of the cyclopentenone 10-oxo-11-phytoenoic acid (10-oxo-PEA). Incubations with [1-14C]linoleic acid led to the formation of the α-ketols 13-hydroxy-12-oxo-9-octadecenoic acid and 9-hydroxy-10-oxo-12-octadecenoic acid as well as the cyclopentenones 12-oxo-10-phytoenoic acid (12-oxo-PEA) and 10-oxo-PEA in a ratio of 10:2:1:3. Chiral phase radio-HPLC showed that the labeled 10-oxo-PEA was mainly (93%) due to the 9S,13S-enantiomer, whereas 12-oxo-PEA was racemic. Recombinant maize AOS CYP74A19 (ZmAOS2) converted linoleic acid 9(S)-hydroperoxide (9-HPOD) into an allene oxide, 9,10-epoxy-10,12-octadecadienoic acid (9,10-EOD), which did not undergo cyclization but was solely hydrolyzed into the α-ketol. A cyclase activity promoting the conversion of 9,10-EOD into (9S,13S)-10-oxo-PEA was detected in the 10(5)×g supernatant prepared by differential centrifugation of the maize root homogenate. The data obtained suggested the existence of a new type of allene oxide cyclase, which is active towards an allene oxide formed from a 9-lipoxygenase-derived hydroperoxide.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbalip.2015.05.004DOI Listing
September 2015

Detection and molecular cloning of CYP74Q1 gene: identification of Ranunculus acris leaf divinyl ether synthase.

Biochim Biophys Acta 2014 Sep 24;1841(9):1227-33. Epub 2014 May 24.

Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, 420111 Kazan, Russia. Electronic address:

Enzymes of the CYP74 family, including the divinyl ether synthase (DES), play important roles in plant cell signalling and defence. The potent DES activities have been detected before in the leaves of the meadow buttercup (Ranunculus acris L.) and few other Ranunculaceae species. The nature of these DESs and their genes remained unrevealed. The PCR with degenerate primers enabled to detect the transcript of unknown P450 gene assigned as CYP74Q1. Besides, two more CYP74Q1 isoforms with minimal sequence variations have been found. The full length recombinant CYP74Q1 protein was expressed in Escherichia coli. The preferred substrates of this enzyme are the 13-hydroperoxides of α-linolenic and linoleic acids, which are converted to the divinyl ether oxylipins (ω5Z)-etherolenic acid, (9Z,11E)-12-[(1'Z,3'Z)-hexadienyloxy]-9,11-dodecadienoic acid, and (ω5Z)-etheroleic acid, (9Z,11E)-12-[(1'Z)-hexenyloxy]-9,11-dodecadienoic acid, respectively, as revealed by the data of mass spectrometry, NMR and UV spectroscopy. Thus, CYP74Q1 protein was identified as the R. acris DES (RaDES), a novel DES type and the opening member of new CYP74Q subfamily.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbalip.2014.05.005DOI Listing
September 2014

Thermal conversions of fatty acid peroxides to cyclopentenones: a biomimetic model for allene oxide synthase pathway.

Chem Phys Lipids 2013 Oct-Nov;175-176:92-8. Epub 2013 Aug 30.

Kazan institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111, Russia.

The trimethylsilyl (TMS) peroxides of linoleic acid 9(S)-hydroperoxide (TMS or Me esters) were subjected to gas chromatography-mass spectrometry (GC-MS) analyses. The cyclopentenones, trans- and cis-10-oxo-11-phytoenoic acid (10-oxo-PEA, Me or TMS esters) were first time detected as the products of TMS-peroxide thermal conversions. The major products were ketodienes, epoxyalcohols, hemiacetals and decadienals. For further study of thermal cyclopentenone formation, 9(S)- or 13(S)-hydroperoxides of linoleic acid (Me esters) were sealed in ampoules and heated at 230 °C for 15 or 30 min. The products were separated by HPLC. The cyclopentenone fractions were collected and analyzed by GC-MS. Trans-10-oxo-PEA (Me) and 10-oxo-9(13)-PEA (Me) were formed during the thermal conversion of 9-hydroperoxide (Me ester). Similarly, the cyclopentenones trans-12-oxo-PEA (Me) and 12-oxo-9(13)-PEA (Me) were detected after the heating of 13-hydroperoxide (Me ester). Thermal formation of cyclopentenones can be considered as a biomimetic model of AOS pathway, providing new insights into the mechanisms of allene oxide formation and cyclization.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemphyslip.2013.08.005DOI Listing
June 2014

Structure-function relationship in the CYP74 family: conversion of divinyl ether synthases into allene oxide synthases by site-directed mutagenesis.

FEBS Lett 2013 Aug 2;587(16):2552-8. Epub 2013 Jul 2.

Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111, Russia.

Non-classical P450s of CYP74 family control several enzymatic conversions of fatty acid hydroperoxides to bioactive oxylipins in plants, some invertebrates and bacteria. The family includes two dehydrases, namely allene oxide synthase (AOS) and divinyl ether synthase (DES), and two isomerases, hydroperoxide lyase (HPL) and epoxyalcohol synthase. To study the interconversion of different CYP74 enzymes, we prepared the mutant forms V379F and E292G of tobacco (CYP74D3) and flax (CYP74B16) divinyl ether synthases (DESs), respectively. In contrast to the wild type (WT) enzymes, both mutant forms lacked DES activity. Instead, they produced the typical AOS products, α-ketols and (in the case of the flax DES mutant) 12-oxo-10,15-phytodienoic acid. This is the first demonstration of DES into AOS conversions caused by single point mutations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.febslet.2013.06.030DOI Listing
August 2013

Hydroperoxide lyase cascade in pea seedlings: Non-volatile oxylipins and their age and stress dependent alterations.

Phytochemistry 2011 Apr;72(4-5):356-64

Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences P.O. Box 30, Kazan 420111, Russia.

The profiles of non-volatile oxylipins of pea (Pisum sativum) seedlings were examined by gas chromatography-mass spectrometry after invitro incubation with α-linolenic acid. The 13-lipoxygenase/hydroperoxide lyase (HPL) products were predominant in the leaves, while the roots possess both 13- and 9-HPL products. Allene oxide synthase (AOS) and divinyl ether synthase (DES) products were not detected in the leaves or in the roots of any age. The HPL cascade produces a diversity of oxylipins, including the compounds (2E)-4-hydroxy-traumatic, (10E)-9,12-dihydroxy-10-dodecenoic and 9,12-dihydroxydodecanoic acids, as well as (2E)-4-hydroxy-2-nonenoic acid, which has not yet been detected in plants. Oxylipin patterns were altered by infection, water deficit, as well as by plant age. Infection caused the specific strong accumulation of azelaic (nonane-1,9-dioic) acid in the leaves. The azelaic acid content in the aged (14 and 18day-old) leaves was significantly higher than in the younger leaves. Water deficit induced the accumulation of (2E)-4-hydroxy-2-nonenoic acid and (2E)-traumatic acid in the roots. Results demonstrate that: (1) the HPL cascade is the predominant branch of the lipoxygenase pathway in pea seedlings; (2) the HPL products may have the regulatory role both in growth control and adaptation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phytochem.2011.01.013DOI Listing
April 2011

Detection of divinyl ether synthase in Lily-of-the-Valley (Convallaria majalis) roots.

Phytochemistry 2008 Nov 24;69(16):2793-8. Epub 2008 Oct 24.

Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, Lobachevsky Street 2/31, P.O. Box 30, 420111 Kazan, Russia.

Incubations of linoleic acid with cell-free preparations from Lily-of-the-Valley (Convallaria majalis L., Ruscaceae) roots revealed the presence of 13-lipoxygenase and divinyl ether synthase (DES) activities. Exogenous linoleic acid was metabolized predominantly into (9Z,11E,1'E)-12-(1'-hexenyloxy)-9,11-dodecadienoic (etheroleic) acid. Its identification was confirmed by the data of ultraviolet spectroscopy, mass spectra, (1)H NMR, COSY, catalytic hydrogenation. The isomeric divinyl ether (8E,1'E,3'Z)-12-(1',3'-nonadienyloxy)-8-nonenoic (colneleic) acid was detected as a minor product. Incubations with linoleic acid hydroperoxides revealed that 13-hydroperoxide was a preferential substrate, while the 9-hydroperoxide was utilized with lesser efficiency.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phytochem.2008.09.011DOI Listing
November 2008

Determinants governing the CYP74 catalysis: conversion of allene oxide synthase into hydroperoxide lyase by site-directed mutagenesis.

FEBS Lett 2008 Oct 18;582(23-24):3423-8. Epub 2008 Sep 18.

Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, 420111 Kazan, Russia.

Bioinformatics analyses enabled us to identify the hypothetical determinants of catalysis by CYP74 family enzymes. To examine their recognition, two mutant forms F295I and S297A of tomato allene oxide synthase LeAOS3 (CYP74C3) were prepared by site-directed mutagenesis. Both mutations dramatically altered the enzyme catalysis. Both mutant forms possessed the activity of hydroperoxide lyase, while the allene oxide synthase activity was either not detectable (F295I) or significantly reduced (S297A) compared to the wild-type LeAOS3. Thus, both sites 295 and 297 localized within the "I-helix central domain" ("oxygen binding domain") are the primary determinants of CYP74 type of catalysis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.febslet.2008.09.005DOI Listing
October 2008

Tomato CYP74C3 is a multifunctional enzyme not only synthesizing allene oxide but also catalyzing its hydrolysis and cyclization.

Chembiochem 2008 Oct;9(15):2498-505

Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, Kazan, Russia.

The mechanism of the recombinant tomato allene oxide synthase (LeAOS3, CYP74C3) was studied. Incubations of linoleic acid (9S)-hydroperoxide with dilute suspensions of LeAOS3 (10-20 s, 0 degrees C) yield mostly the expected allene oxide (12Z)-9,10-epoxy-10,12-octadecadienoic acid (9,10-EOD), which was detected as its methanol-trapping product. In contrast, the relative yield of 9,10-EOD progressively decreased when the incubations were performed with fourfold, tenfold, or 80-fold larger amounts of LeAOS3, while alpha-ketol and the cyclopentenone rac-cis-10-oxo-11-phytoenoic acid (10-oxo-PEA) became the predominant products. Both the alpha-ketol and 10-oxo-PEA were also produced when LeAOS3 was exposed to preformed 9,10-EOD, which was generated by maize allene oxide synthase (CYP74A). LeAOS3 also converted linoleic acid (13S)-hydroperoxide into the corresponding allene oxide, but with about tenfold lower yield of cyclopentenone. The results indicate that in contrast to the ordinary allene oxide synthases (CYP74A subfamily), LeAOS3 (CYP74C subfamily) is a multifunctional enzyme, catalyzing not only the synthesis, but also the hydrolysis and cyclization of allene oxide.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbic.200800331DOI Listing
October 2008

Detection of a pathway from linoleate to a novel cyclopentenone: cis-12-oxo-10-phytoenoic acid in sunflower roots.

Chembiochem 2007 Dec;8(18):2275-80

Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111, Russia.

The lipoxygenase pathway in sunflower roots was studied in vitro. A preliminary incubation of linoleic acid with 15 000 g supernatant of homogenate of sunflower roots (1.5-6 days after germination) revealed the predominant activity of 13-lipoxygenase. The exogenously added linoleic acid 13-hydroperoxide is further utilized through two competing pathways. One of them is directed towards formation of the ketodiene (9Z,11E)-13-oxooctadeca-9,11-dienoic acid. The second pathway, which is controlled by allene oxide synthase, leads to the formation of an alpha-ketol and a novel cyclopentenone, rac-cis-12-oxo-10-phytoenoic acid (12-oxo-PEA) via a short-lived allene oxide. Unexpectedly, the cyclopentenone 12-oxo-PEA is the predominant allene oxide synthase product. Identification of cis-12-oxo-PEA was confirmed by its UV, mass, (1)H NMR and 2D-COSY spectral data. The highest yield of 12-oxo-PEA is observed in very young roots (1.5-2 days after germination). The results of methanol-trapping experiments demonstrate that both 12-oxo-PEA and alpha-ketol are formed through the unstable allene oxide intermediate, (9Z)-12,13-epoxyoctadeca-9,11-dienoic acid, which is the primary product of allene oxide synthase. Since 12-oxo-PEA is a jasmonate congener, its biosynthesis in plants might be of physiological importance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbic.200700393DOI Listing
December 2007

Cyclization of natural allene oxide in aprotic solvent: formation of the novel oxylipin methyl cis-12-oxo-10-phytoenoate.

Chem Phys Lipids 2007 Aug 29;148(2):91-6. Epub 2007 Apr 29.

Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, PO Box 30, 420111 Kazan, Russia.

Allene oxide, (9Z,11E)-12,13-epoxy-9,11-octadecadienoic acid (12,13-EOD), was prepared by incubation of linoleic acid (13S)-hydroperoxide with flaxseed allene oxide synthase (AOS) and purified (as methyl ester) by low temperature HPLC. Identification of pure 12,13-EOD was substantiated by its UV and (1)H NMR spectra and by GC-MS data for its methanol trapping product. The methyl ester of 12,13-EOD (but not the free carboxylic acid) is slowly cyclized in hexane solution, affording a novel cyclopentenone cis-12-oxo-10-phytoenoic acid. Free carboxylic form of 12,13-EOD does not cyclize due to the exceeding formation of macrolactone (9Z)-12-oxo-9-octadecen-11-olide. The spontaneous cyclization of pure natural allene oxide (12,13-EOD) into cis-cyclopentenone have been observed first time.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemphyslip.2007.04.010DOI Listing
August 2007

Hydroperoxide lyases (CYP74C and CYP74B) catalyze the homolytic isomerization of fatty acid hydroperoxides into hemiacetals.

Biochim Biophys Acta 2006 Dec 14;1761(12):1419-28. Epub 2006 Sep 14.

Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan, 420111 Russia.

The conversion of linoleic acid 9-hydroperoxide (9-HPOD) by recombinant melon (Cucumis melo L.) hydroperoxide lyase (HPL, CYP74C subfamily) was studied. Short (5 s-1 min) incubations at 0 degrees C followed by rapid extraction and trimethylsilylation made it possible to trap a new unstable (t(1/2) <30 s) product, i.e. the hemiacetal (1'E,3'Z)-9-hydroxy-9-(1',3'-nonadienyloxy)-nonanoic acid. Identification was performed by GC-MS analysis and substantiated by the formation of trimethylsilyl 9-trimethylsilyloxy-9-nonyloxy-nonanoate upon catalytic hydrogenation and by (2)H-labelling experiments. Both (18)O atoms of [(18)O(2)-hydroperoxy]9-HPOD were incorporated into the hemiacetal. Along with the hemiacetal, three chain-cleavage products, i.e. the enol (1E,3Z)-nonadienol and the hydrates of 3(Z)-nonenal and 9-oxononanoic acid, were trapped as their trimethylsilyl derivatives. The kinetics of (18)O incorporation from [(18)O(2)]9-HPOD provided strong evidence that the cleavage products originated in the hemiacetal. Linolenic and linoleic acid 13-hydroperoxides served as substrates for recombinant HPLs of melon, alfalfa (Medicago sativa) and guava (Psidium guajava), and in each case hemiacetals and enols were detectable by the trapping technique. The data obtained demonstrated that CYP74C and CYP74B HPLs act as isomerases performing a homolytic rearrangement of fatty acid hydroperoxides into short-lived hemiacetals which upon decomposition produce 3(Z)-nonenal, 3(Z)-hexenal and other short chain aldehydes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbalip.2006.09.002DOI Listing
December 2006

Thermal conversions of trimethylsilyl peroxides of linoleic and linolenic acids.

Chem Phys Lipids 2005 Dec 6;138(1-2):93-101. Epub 2005 Oct 6.

Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111, Russia.

The trimethylsilyl (TMS) peroxides/esters of the fatty acid hydroperoxides (9S,10E,12Z)-9-hydroperoxy-10,12-octadecadienoic acid (9-HPOD) and (9Z,11E,13S,15Z)-13-hydroperoxy-9,11,15-octadecatrienoic acid (13-HPOT) were subjected to gas chromatography-mass spectrometry and products formed by thermal rearrangements were identified. The main products were decadienals and the TMS derivatives of 13-oxo-9,11-tridecadienoic acid, epoxyalcohols, hemiacetals, and ketodienes. Oxy radicals as well as epoxyallylic radicals served as intermediates in the formation of these compounds. The thermal TMS peroxide conversions documented provided biomimetic models for enzymatic conversions of fatty acid hydroperoxides and also offered a method to generate an array of oxylipin derivatives of value as reference compounds in GC-MS studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemphyslip.2005.09.001DOI Listing
December 2005

Detection of an enol intermediate in the hydroperoxide lyase chain cleavage reaction.

FEBS Lett 2003 Aug;549(1-3):31-4

Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, Kazan, Russia.

Guava (Psidium guajava) hydroperoxide lyase (HPL) preparations were incubated with [1-(14)C](9Z,11E,13S,15Z)-13-hydroperoxy-9,11,15-octadecatrienoic acid for 1 min at 0 degrees C, followed by rapid extraction/trimethylsilylation. Analysis of the trimethylsilylated products by gas chromatography-mass spectrometry and radio-high-performance liquid chromatography revealed a single predominant (14)C-labelled compound, identified by its (1)H-nuclear magnetic resonance, ultraviolet and mass spectra as the trimethylsilyl ether/ester of (9Z,11E)-12-hydroxy-9,11-dodecadienoic acid. Longer time incubations afford smaller yield of this enol due to its partial tautomerization into (9Z)-12-oxo-9-dodecenoic acid. The data obtained demonstrate that formation of (9Z)-12-oxo-9-dodecenoic acid in the HPL reaction is preceded by unstable enol oxylipin, and further suggest that hemiacetals are the true products of HPL catalysis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0014-5793(03)00758-0DOI Listing
August 2003

Role of structure and pH in cyclization of allene oxide fatty acids: implications for the reaction mechanism.

Chem Phys Lipids 2002 Dec;120(1-2):87-99

Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, 420503, Kazan, Russia.

Incubations of allene oxide synthases of flax or maize with the E,E-isomers of the 13- and 9-hydroperoxides of linoleic acid (E,E-13- and E,E-9-HPOD, respectively) at pH 7.5 afforded substantial yields of trans-disubstituted cyclopentenones. Under the conditions used, (Z,E)-HPODs were converted mainly into alpha-ketols and afforded only trace amount of cyclopentenones. These findings indicated that changing the double bond geometry from Z to E dramatically increased the rate of formation of the pericyclic pentadienyl cation intermediate necessary for electrocyclization of 18:2-allene oxides and thus the yield of cyclopentenones. The well-known cyclization of the homoallylic allene oxide (12,13-EOT) derived from alpha-linolenic acid 13-hydroperoxide (E,Z-13-HPOT) into cis-12-oxo-10,15-phytodienoic acid was suppressed at pH below neutral and was not observable at pH 4.5. In contrast, cyclization of the allene oxide ((9E)-12,13-EOD) derived from (E,E)-13-HPOD was slightly favoured at low pH. The finding that the cyclizations of 12,13-EOT and (9E)-12,13-EOD were differently affected by changes in pH suggested that the mechanisms of cyclization of these allene oxides are distinct.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0009-3084(02)00107-xDOI Listing
December 2002