Publications by authors named "Lucas F Rocha"

3 Publications

  • Page 1 of 1

American tegumentary leishmaniasis: mRNA expression for Th1 and Treg mediators are predominant in patients with recent active disease.

Immunobiology 2016 Feb 14;221(2):253-9. Epub 2015 Aug 14.

Laboratory of Immunogenetics, Immunology Department, Aggeu Magalhães Research Center, Oswaldo Cruz Foundation (CPqAM/FIOCRUZ), Brazil. Electronic address:

Besides the Th1×Th2 paradigm, Treg and Th17 cytokines may play a role in the response to American tegumentary leishmaniasis. Considering the sensitivity and accuracy of qPCR and the lack of studies using this approach, we evaluated mRNA expression for IFN-γ, TNF-α, IL-4, IL-10, IL-6, IL-17A, IL-22, TGF-β, Foxp3 and RORC in peripheral blood mononuclear cells (PBMC) from patients with active disease, after stimulation with L. (V.) braziliensis soluble or insoluble fractions. Our results show that the antigens promoted specific mRNA expression related to the immune response in patients with ATL, and the insoluble fraction seems to stimulate the immune response in a higher intensity. The pro-inflammatory response was also fueled by IFN-γ and TNF-α, probably due to the active disease. IL-4, in certain way, seems to regulate this response along with IL-10 that may be produced by Treg cells, which are supposedly present in the patients' samples due the evidenced expression of Foxp3, in the presence of AgIns. In contrast, down-regulated RORC suggests that the significant levels of IL-6 expressed in response to AgSol were not able to induce an expressive Th17 profile along with TGF-β, which might have predominantly contributed to the development of a regulatory profile in the active disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.imbio.2015.08.009DOI Listing
February 2016

Thiosemicarbazones as Aedes aegypti larvicidal.

Eur J Med Chem 2015 Jul 28;100:162-75. Epub 2015 May 28.

Quantum Theory Project, University of Florida, 2234 New Physics Building, Gainesville, PO Box 118435, Florida, USA.

A set of aryl- and phenoxymethyl-(thio)semicarbazones were synthetized, characterized and biologically evaluated against the larvae of Aedes aegypti (A. aegypti), the vector responsible for diseases like Dengue and Yellow Fever. (Q)SAR studies were useful for predicting the activities of the compounds not included to create the QSAR model as well as to predict the features of a new compound with improved activity. Docking studies corroborated experimental evidence of AeSCP-2 as a potential target able to explain the larvicidal properties of its compounds. The trend observed between the in silico Docking scores and the in vitro pLC50 (equals -log LC50, at molar concentration) data indicated that the highest larvicidal compounds, or the compounds with the highest values for pLC50, are usually those with the higher docking scores (i.e., greater in silico affinity for the AeSCP-2 target). Determination of cytotoxicity for these compounds in mammal cells demonstrated that the top larvicide compounds are non-toxic.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2015.04.061DOI Listing
July 2015

Investigation on the pharmacological profile of antimony(III) complexes with hydroxyquinoline derivatives: anti-trypanosomal activity and cytotoxicity against human leukemia cell lines.

Biometals 2011 Aug 9;24(4):595-601. Epub 2011 Jan 9.

Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil.

Complexes [Sb(QN)(2)Cl] (1), [Sb(QC)(2)Cl] (2) and [Sb(QI)(2)Cl] (3) were obtained with 8-hydroxyquinoline (HQN), 5-chloro-8-hydroxyquinoline (HQC) and 5-chloro-7-iodo-8-hydroxyquinoline (clioquinol, HQI). The quinoline derivatives and their antimony(III) complexes were evaluated for their anti-trypanosomal activity as well as for their cytotoxicity against HL-60 and Jurkat human leukemia cell lines. Upon coordination to antimony(III) the anti-trypanosomal activity of HQC and HQI increases, the highest improvement being observed for complex (3), which was the most active among all studied compounds against both epimastigote and trypomastigote forms of Trypanosoma cruzi. All quinoline derivatives proved to be cytotoxic against both leukemia cell lineages. Upon coordination to antimony(III) the cytotoxicity of HQN improved against Jurkat leukemia cells. While SbCl(3) proved to be cytotoxic against HL-60 cells, it was not active against Jurkat cells. However, its coordination to the quinoline derivatives resulted in complexes with significant cytotoxicity against Jurkat cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10534-011-9407-8DOI Listing
August 2011
-->