Publications by authors named "Lovely Jael Paul Solomon Devakumar"

2 Publications

  • Page 1 of 1

Ligation of newly replicated DNA controls the timing of DNA mismatch repair.

Curr Biol 2021 03 7;31(6):1268-1276.e6. Epub 2021 Jan 7.

DNA Repair Mechanisms and Cancer, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg 69120, Germany. Electronic address:

Mismatch repair (MMR) safeguards genome stability through recognition and excision of DNA replication errors. How eukaryotic MMR targets the newly replicated strand in vivo has not been established. MMR reactions reconstituted in vitro are directed to the strand containing a preexisting nick or gap, suggesting that strand discontinuities could act as discrimination signals. Another candidate is the proliferating cell nuclear antigen (PCNA) that is loaded at replication forks and is required for the activation of Mlh1-Pms1 endonuclease. Here, we discovered that overexpression of DNA ligase I (Cdc9) in Saccharomyces cerevisiae causes elevated mutation rates and increased chromatin-bound PCNA levels and accumulation of Pms1 foci that are MMR intermediates, suggesting that premature ligation of replication-associated nicks interferes with MMR. We showed that yeast Pms1 expression is mainly restricted to S phase, in agreement with the temporal coupling between MMR and DNA replication. Restricting Pms1 expression to the G2/M phase caused a mutator phenotype that was exacerbated in the absence of the exonuclease Exo1. This mutator phenotype was largely suppressed by increasing the lifetime of replication-associated DNA nicks, either by reducing or delaying Cdc9 ligase activity in vivo. Therefore, Cdc9 dictates a window of time for MMR determined by transient DNA nicks that direct the Mlh1-Pms1 in a strand-specific manner. Because DNA nicks occur on both newly synthesized leading and lagging strands, these results establish a general mechanism for targeting MMR to the newly synthesized DNA, thus preventing the accumulation of mutations that underlie the development of human cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2020.12.018DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8281387PMC
March 2021

Effective mismatch repair depends on timely control of PCNA retention on DNA by the Elg1 complex.

Nucleic Acids Res 2019 07;47(13):6826-6841

Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK.

Proliferating cell nuclear antigen (PCNA) is a sliding clamp that acts as a central co-ordinator for mismatch repair (MMR) as well as DNA replication. Loss of Elg1, the major subunit of the PCNA unloader complex, causes over-accumulation of PCNA on DNA and also increases mutation rate, but it has been unclear if the two effects are linked. Here we show that timely removal of PCNA from DNA by the Elg1 complex is important to prevent mutations. Although premature unloading of PCNA generally increases mutation rate, the mutator phenotype of elg1Δ is attenuated by PCNA mutants PCNA-R14E and PCNA-D150E that spontaneously fall off DNA. In contrast, the elg1Δ mutator phenotype is exacerbated by PCNA mutants that accumulate on DNA due to enhanced electrostatic PCNA-DNA interactions. Epistasis analysis suggests that PCNA over-accumulation on DNA interferes with both MMR and MMR-independent process(es). In elg1Δ, over-retained PCNA hyper-recruits the Msh2-Msh6 mismatch recognition complex through its PCNA-interacting peptide motif, causing accumulation of MMR intermediates. Our results suggest that PCNA retention controlled by the Elg1 complex is critical for efficient MMR: PCNA needs to be on DNA long enough to enable MMR, but if it is retained too long it interferes with downstream repair steps.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/nar/gkz441DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6648347PMC
July 2019
-->