Publications by authors named "Louise F Kimura"

9 Publications

  • Page 1 of 1

The Crotoxin:SBA-15 Complex Down-Regulates the Incidence and Intensity of Experimental Autoimmune Encephalomyelitis Through Peripheral and Central Actions.

Front Immunol 2020 28;11:591563. Epub 2020 Oct 28.

Laboratory of Pain and Signaling, Butantan Institute, Sao Paulo, Brazil.

Crotoxin (CTX), the main neurotoxin from snake venom, has anti-inflammatory, immunomodulatory and antinociceptive activities. However, the CTX-induced toxicity may compromise its use. Under this scenario, the use of nanoparticle such as nanostructured mesoporous silica (SBA-15) as a carrier might become a feasible approach to improve CTX safety. Here, we determined the benefits of SBA-15 on CTX-related neuroinflammatory and immunomodulatory properties during experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis that replicates several histopathological and immunological features observed in humans. We showed that a single administration of CTX:SBA-15 (54 μg/kg) was more effective in reducing pain and ameliorated the clinical score (motor impairment) in EAE animals compared to the CTX-treated EAE group; therefore, improving the disease outcome. Of interest, CTX:SBA-15, but not unconjugated CTX, prevented EAE-induced atrophy and loss of muscle function. Further supporting an immune mechanism, CTX:SBA-15 treatment reduced both recruitment and proliferation of peripheral Th17 cells as well as diminished IL-17 expression and glial cells activation in the spinal cord in EAE animals when compared with CTX-treated EAE group. Finally, CTX:SBA-15, but not unconjugated CTX, prevented the EAE-induced cell infiltration in the CNS. These results provide evidence that SBA-15 maximizes the immunomodulatory and anti-inflammatory effects of CTX in an EAE model; therefore, suggesting that SBA-15 has the potential to improve CTX effectiveness in the treatment of MS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fimmu.2020.591563DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7655790PMC
October 2020

Advanced glycation endproducts produced by in vitro glycation of type I collagen modulate the functional and secretory behavior of dorsal root ganglion cells cultivated in two-dimensional system.

Exp Cell Res 2019 09 27;382(2):111475. Epub 2019 Jun 27.

Laboratory of Pathophysiology, Butantan Institute, Sao Paulo, Brazil; Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil. Electronic address:

Advanced glycation end-products (AGEs) are proteins/lipids that are glycated upon sugar exposure and are often increased during inflammatory diseases such as osteoarthritis and neurodegenerative disorders. Here, we developed an extracellular matrix (ECM) using glycated type I collagen (ECM-GC), which produced similar levels of AGEs to those detected in the sera of arthritic mice. In order to determine whether AGEs were sufficient to stimulate sensory neurons, dorsal root ganglia (DRGs) cells were cultured on ECM-GC or ECM-NC-coated plates. ECM-GC or ECM-NC were favorable for DRG cells expansion. However, ECM-GC cultivated neurons displayed thinner F-actin filaments, rounded morphology, and reduced neuron interconnection compared to ECM-NC. In addition, ECM-GC did not affect RAGE expression levels in the neurons, although induced rapid p38, MAPK and ERK activation. Finally, ECM-GC stimulated the secretion of nitrite and TNF-α by DRG cells. Taken together, our in vitro glycated ECM model suitably mimics the in vivo microenvironment of inflammatory disorders and provides new insights into the role of ECM impairment as a nociceptive stimulus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexcr.2019.06.020DOI Listing
September 2019

Some pharmacological effects of Tityus obscurus venom in rats and mice.

Toxicon 2017 Feb 22;126:51-58. Epub 2016 Dec 22.

Laboratory of Pharmacology, Butantan Institute, Av. Dr. Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil. Electronic address:

There are a great number of studies about Brazilian scorpions. However, little is known about the venom of scorpions of northern Brazil, mainly about Tityus obscurus, which is responsible for the most number of accidents in the Amazon. Thus, this study aimed to evaluate some pharmacological effects of T. obscurus venom in rats and mice. In rats, the venom (10 mg/kg i.p.) caused hemorrhagic patches in the lung parenchyma but did not lead to pulmonary edema. There was a decrease in general activity, observed in the activity box after venom injection. The venom did not induce changes in the occurrence and intensity of experimentally induced convulsions, nor did it cause hippocampal neuronal loss. In mice, the LD obtained was 3.13 mg/kg (i.p.). Different doses of the venom (0.2; 1; 5; 10; 15 μg/30 μL per hind paw) induced edematogenic and moderate nociceptive activity in mice. The Tiyus serrulatus venom used as comparison caused more intense symptomatology in mice. Comparing to the venom of other Tityus scorpions of medical importance, that have convulsant and intense nociceptive effects and cause lung edema, as described in the literature, we can conclude that the venom of T. obscurus probably has different characteristics.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxicon.2016.12.008DOI Listing
February 2017

Involvement of mast cells and histamine in edema induced in mice by Scolopendra viridicornis centipede venom.

Toxicon 2016 Oct 24;121:51-60. Epub 2016 Aug 24.

Laboratório de Imunopatologia, Instituto Butantan, Av. Vital Brasil 1500, 05503-900, São Paulo, SP, Brazil. Electronic address:

Bites caused by Scolopendra viridicornis centipede are mainly characterized by burning pain, paresthesia and edema. On this regard, the aim of this work was to study the involvement of mast cells and histamine in edema induced by Scolopendra viridicornis (Sv) centipede venom. The edema was analyzed on mice paws. The mice were pretreated with cromolyn (mast cell degranulation inhibitor) and antagonists of histamine receptors, such as promethazine (HR), cimetidine (HR) and thioperamide (H/HR). The analyses were carried out at different times after the injection of Sv venom (15 μg) or PBS in the footpad of mice. Our results showed a significant inhibition of the edema induced by Sv venom injection in mice previously treated: cromolyn (38-91%), promethazine (50-59%) and thioperamide (around 30%). The treatment with cimetidine did not alter the edema induced by Sv venom. Histopathological analysis showed that Sv venom injection (15 μg) induced edema, leukocyte recruitment and mast cells degranulation, when compared with the PBS-injected mice. Direct effects of the Sv venom on mast cells were studied in PT-18 line (mouse mast cell) and RBL-2H3 cells (rat mast cells). The data showed that higher doses (3.8 and 7.5 μg) of Sv venom were cytotoxic for both cell lineages and induced morphological changes. However, lower doses of the venom induced degranulation of both mast cell lines, as well as the secretion of MCP-1, IL-6 and IL-1β. The production of PGD was only observed in the RBL-2H3 line incubated with Sv venom. Taking our results together, we demonstrated that upon Sv venom exposure, mast cells and histamine are crucial for the establishment of the local inflammatory reaction.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxicon.2016.08.017DOI Listing
October 2016

Biochemical and biological characterization of Bothriechis schlegelii snake venoms from Colombia and Costa Rica.

Exp Biol Med (Maywood) 2016 12 24;241(18):2075-2085. Epub 2016 Jul 24.

1 Laboratory of Immunopathology, Institute Butantan, São Paulo 05503-900, Brazil.

Snakebites inflicted by the arboreal viperid snake Bothriechis schlegelii in humans are characterized by pain, edema, and ecchymosis at the site of the bite, rarely with blisters, local necrosis, or defibrination. Herein, a comparative study of Bothriechis schlegelii snake venoms from Colombia (BsCo) and Costa Rica (BsCR) was carried out in order to compare their main activities and to verify the efficacy of Bothrops antivenom produced in Brazil to neutralize them. Biochemical (SDS-PAGE and zymography) and biological parameters (edematogenic, lethal, hemorrhagic, nociceptive, and phospholipase A activities) induced by BsCo and BsCR snake venoms were evaluated. The presence of antibodies in Bothrops antivenom that recognize BsCo and BsCR snake venoms by enzyme-linked immunosorbent assay and Western blotting, as well as the ability of this antivenom to neutralize the toxic activities were also verified. SDS-PAGE showed differences between venoms. Distinctive caseinolytic and hyaluronidase patterns were detected by zymography. BsCo and BsCR showed similar phospholipase A activity. Strong cross-reactivity between BsCo and BsCR was detected using Bothrops antivenom with many components located between 150 and 35 kDa. BsCR was more edematogenic and almost fourfold more hemorrhagic than BsCo, and both venoms induced nociception. BsCR (LD 5.60 mg/kg) was more lethal to mice than BsCo (LD 9.24 mg/kg). Bothrops antivenom was effective in the neutralization of lethal and hemorrhagic activities of BsCo and BsCR and was partially effective in the neutralization of edematogenic and nociceptive activities. In conclusion, geographic distribution influences the composition and activities of Bothriechis schlegelii venoms. Bothrops antivenom cross-reacted with these venoms and was partially effective in neutralizing some toxic activities of BsCo and BsCR.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1177/1535370216660214DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5102131PMC
December 2016

Mast cells and histamine play an important role in edema and leukocyte recruitment induced by Potamotrygon motoro stingray venom in mice.

Toxicon 2015 Sep 19;103:65-73. Epub 2015 Jun 19.

Laboratory of Immunopathology, Butantan Institute, Av. Vital Brasil 1500, 05503-900, São Paulo, SP, Brazil. Electronic address:

This work aimed to investigate mechanisms underlying the inflammatory response caused by Potamotrygon motoro stingray venom (PmV) in mouse paws. Pre-treatment of animals with a mast cell degranulation inhibitor (cromolyn) diminished edema (62% of inhibition) and leukocyte influx into the site of PmV injection. Promethazine (histamine type 1 receptor antagonist) or thioperamide (histamine type 3 and 4 receptor antagonist) also decreased edema (up to 30%) and leukocyte numbers, mainly neutrophils (40-50 %). Cimetidine (histamine type 2 receptor antagonist) had no effect on PmV-induced inflammation. In the RBL-2H3 lineage of mast cells, PmV caused proper cell activation, in a dose-dependent manner, with release of PGD2 and PGE2. In addition, the role of COXs products on PmV inflammatory response was evaluated. Indomethacin (COX-1/COX-2 inhibitor) or etoricoxib (COX-2 inhibitor) partially diminished edema (around 20%) in PmV-injected mice. Indomethacin, but not etoricoxib, modulated neutrophil influx into the site of venom injection. In conclusion, mast cell degranulation and histamine, besides COXs products, play an important role in PmV-induced reaction. Since PmV mechanism of action remains unknown, hindering accurate treatment, clinical studies can be performed to validate the prescription of antihistaminic drugs, besides NSAIDs, to patients injured by freshwater stingrays.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxicon.2015.06.006DOI Listing
September 2015

Characterization of inflammatory response induced by Potamotrygon motoro stingray venom in mice.

Exp Biol Med (Maywood) 2014 May 25;239(5):601-9. Epub 2014 Mar 25.

Laboratory of Immunopathology, Institute Butantan, Avenue Vital Brasil 1500, 05503-900 São Paulo, SP, Brazil.

Freshwater stingray accidents cause intense pain followed by edema, erythema, and necrosis formation. Treatment for stingray envenomation is based on administration of analgesic, antipyretic, and anti-inflammatory drugs. This report evaluated the local inflammatory reaction-including edema formation, leukocyte recruitment, release of inflammatory mediators, and histopathological changes-after the intraplantar injection of Potamotrygon motoro stingray venom in mice. Edema was observed as soon as 15 min after venom injection, peaking at 30 min, and lasted up to 48 h. In addition, P. motoro venom increased neutrophil counts in the site of injection, at all time periods and venom doses analyzed. Increased eosinophil and lymphocyte counts were detected mainly at 24 h. Moreover, monocytes/macrophages were observed in large amounts at 24 and 48 h. Microscopically, the venom induced leukocyte migration to the injured tissue, edema, mast cell degranulation, angiogenesis, and epidermal damage. Inflammatory mediator release (IL-6, MCP-1 and KC) was detected as soon as 1 h after venom injection, and it increased significantly at 4 h. At 24 h, the venom induced only the production of MCP-1. These results show that this stingray venom evokes a complex inflammatory reaction, with rapid and persistent edema formation, leukocyte recruitment, and release of cytokines and chemokines.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1177/1535370214523704DOI Listing
May 2014

Cloning, expression and characterization of a phospholipase D from Loxosceles gaucho venom gland.

Biochimie 2013 Sep 14;95(9):1773-83. Epub 2013 Jun 14.

Laboratory of Immunopathology, Butantan Institute, Av. Vital Brasil 1500, 05503-900 São Paulo, SP, Brazil.

Loxosceles venom comprises a mixture of diverse toxins that induces intense local inflammatory reaction, dermonecrotic injury, platelet aggregation, hemolytic anemia and acute renal failure. Among several toxins in the venom, phospholipases D (PLDs), also called dermonecrotic toxins, are the most important and best studied, since they account for the main effects observed in loxoscelism. Despite their importance, biological analysis of PLDs is hampered by the minute amounts normally purified from the venom, and therefore many efforts have been made to clone those toxins. However, to date, no PLD from Loxosceles gaucho has been obtained in a heterologous system. Thus, in this work we show the cloning of a PLD from L. gaucho venom gland, named LgRec1, which was successfully expressed in a bacterial system. LgRec1 evoked local reaction (edema, erythema, ecchymosis, and paleness), dermonecrosis and hemolysis. It was also able to hydrolyze sphingomyelin and promote platelet aggregation. ELISA and Western blot analysis showed that LgRec1 was recognized by an anti-L. gaucho venom serum, a commercial arachnidic antivenom as well as a monoclonal antibody raised against the dermonecrotic fraction of L. gaucho venom. In addition, LgRec1 demonstrated to be highly immunogenic and antibodies raised against this recombinant toxin inhibited local reaction (~65%) and dermonecrosis (~100%) elicited by L. gaucho whole venom. Since PLDs are considered the major components accounting for the local and systemic envenomation effects caused by spiders from genus Loxosceles, the information provided here may help to understand the mechanisms behind clinical symptomatology.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biochi.2013.06.002DOI Listing
September 2013

Inflammatory mediators generated at the site of inoculation of Loxosceles gaucho spider venom.

Toxicon 2010 Nov 6;56(6):972-9. Epub 2010 Jul 6.

Laboratory of Immunopathology, Institute Butantan, Av. Vital Brasil 1500, 05503-900 São Paulo, SP, Brazil.

Patients bitten by Loxosceles spiders generally manifest marked local inflammatory reaction and dermonecrosis. This report evaluated edema formation, leukocyte infiltration and release of inflammatory mediators at the injection site of Loxosceles gaucho venom. BALB/c mice were i.d. injected with venom and thereafter paws were disrupted and homogenized to obtain differential counts of migrated cells, as well to assay the levels of cytokines, chemokines and lipid mediators. Increased footpad thickness was detected as soon as 30 min after venom injection, and 24h later was similar to that of the control group. Loxosceles venom mildly augmented the recruitment of leukocytes to the footpad in comparison with PBS-injected mice. Moreover, it stimulated the release of IL-6, MCP-1 and KC at 2 and 24h after venom injection. In addition, higher levels of PGE(2) were detected 30 min after venom injection in comparison with control group. However, the venom failed to increase levels of IL-1 beta, TNF-alpha, TXB(2) and LTB(4). Our results demonstrate that L. gaucho venom evokes an early complex inflammatory reaction, stimulating the secretion of pro-inflammatory cytokines and lipid mediators (PGE(2)), and recruiting leukocytes to the footpad which contribute to the local reaction induced by L. gaucho venom.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxicon.2010.06.022DOI Listing
November 2010