Publications by authors named "Lot Snijders Blok"

14 Publications

  • Page 1 of 1

Mutation-specific pathophysiological mechanisms define different neurodevelopmental disorders associated with SATB1 dysfunction.

Authors:
Joery den Hoed Elke de Boer Norine Voisin Alexander J M Dingemans Nicolas Guex Laurens Wiel Christoffer Nellaker Shivarajan M Amudhavalli Siddharth Banka Frederique S Bena Bruria Ben-Zeev Vincent R Bonagura Ange-Line Bruel Theresa Brunet Han G Brunner Hui B Chew Jacqueline Chrast Loreta Cimbalistienė Hilary Coon Emmanuèlle C Délot Florence Démurger Anne-Sophie Denommé-Pichon Christel Depienne Dian Donnai David A Dyment Orly Elpeleg Laurence Faivre Christian Gilissen Leslie Granger Benjamin Haber Yasuo Hachiya Yasmin Hamzavi Abedi Jennifer Hanebeck Jayne Y Hehir-Kwa Brooke Horist Toshiyuki Itai Adam Jackson Rosalyn Jewell Kelly L Jones Shelagh Joss Hirofumi Kashii Mitsuhiro Kato Anja A Kattentidt-Mouravieva Fernando Kok Urania Kotzaeridou Vidya Krishnamurthy Vaidutis Kučinskas Alma Kuechler Alinoë Lavillaureix Pengfei Liu Linda Manwaring Naomichi Matsumoto Benoît Mazel Kirsty McWalter Vardiella Meiner Mohamad A Mikati Satoko Miyatake Takeshi Mizuguchi Lip H Moey Shehla Mohammed Hagar Mor-Shaked Hayley Mountford Ruth Newbury-Ecob Sylvie Odent Laura Orec Matthew Osmond Timothy B Palculict Michael Parker Andrea K Petersen Rolph Pfundt Eglė Preikšaitienė Kelly Radtke Emmanuelle Ranza Jill A Rosenfeld Teresa Santiago-Sim Caitlin Schwager Margje Sinnema Lot Snijders Blok Rebecca C Spillmann Alexander P A Stegmann Isabelle Thiffault Linh Tran Adi Vaknin-Dembinsky Juliana H Vedovato-Dos-Santos Samantha A Schrier Vergano Eric Vilain Antonio Vitobello Matias Wagner Androu Waheeb Marcia Willing Britton Zuccarelli Usha Kini Dianne F Newbury Tjitske Kleefstra Alexandre Reymond Simon E Fisher Lisenka E L M Vissers

Am J Hum Genet 2021 02 28;108(2):346-356. Epub 2021 Jan 28.

Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6500 GL Nijmegen, the Netherlands.

Whereas large-scale statistical analyses can robustly identify disease-gene relationships, they do not accurately capture genotype-phenotype correlations or disease mechanisms. We use multiple lines of independent evidence to show that different variant types in a single gene, SATB1, cause clinically overlapping but distinct neurodevelopmental disorders. Clinical evaluation of 42 individuals carrying SATB1 variants identified overt genotype-phenotype relationships, associated with different pathophysiological mechanisms, established by functional assays. Missense variants in the CUT1 and CUT2 DNA-binding domains result in stronger chromatin binding, increased transcriptional repression, and a severe phenotype. In contrast, variants predicted to result in haploinsufficiency are associated with a milder clinical presentation. A similarly mild phenotype is observed for individuals with premature protein truncating variants that escape nonsense-mediated decay, which are transcriptionally active but mislocalized in the cell. Our results suggest that in-depth mutation-specific genotype-phenotype studies are essential to capture full disease complexity and to explain phenotypic variability.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2021.01.007DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7895900PMC
February 2021

Heterozygous variants that disturb the transcriptional repressor activity of FOXP4 cause a developmental disorder with speech/language delays and multiple congenital abnormalities.

Genet Med 2021 Mar 28;23(3):534-542. Epub 2020 Oct 28.

Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.

Purpose: Heterozygous pathogenic variants in various FOXP genes cause specific developmental disorders. The phenotype associated with heterozygous variants in FOXP4 has not been previously described.

Methods: We assembled a cohort of eight individuals with heterozygous and mostly de novo variants in FOXP4: seven individuals with six different missense variants and one individual with a frameshift variant. We collected clinical data to delineate the phenotypic spectrum, and used in silico analyses and functional cell-based assays to assess pathogenicity of the variants.

Results: We collected clinical data for six individuals: five individuals with a missense variant in the forkhead box DNA-binding domain of FOXP4, and one individual with a truncating variant. Overlapping features included speech and language delays, growth abnormalities, congenital diaphragmatic hernia, cervical spine abnormalities, and ptosis. Luciferase assays showed loss-of-function effects for all these variants, and aberrant subcellular localization patterns were seen in a subset. The remaining two missense variants were located outside the functional domains of FOXP4, and showed transcriptional repressor capacities and localization patterns similar to the wild-type protein.

Conclusion: Collectively, our findings show that heterozygous loss-of-function variants in FOXP4 are associated with an autosomal dominant neurodevelopmental disorder with speech/language delays, growth defects, and variable congenital abnormalities.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-020-01016-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7935712PMC
March 2021

Mutations of the Transcriptional Corepressor ZMYM2 Cause Syndromic Urinary Tract Malformations.

Authors:
Dervla M Connaughton Rufeng Dai Danielle J Owen Jonathan Marquez Nina Mann Adda L Graham-Paquin Makiko Nakayama Etienne Coyaud Estelle M N Laurent Jonathan R St-Germain Lot Snijders Blok Arianna Vino Verena Klämbt Konstantin Deutsch Chen-Han Wilfred Wu Caroline M Kolvenbach Franziska Kause Isabel Ottlewski Ronen Schneider Thomas M Kitzler Amar J Majmundar Florian Buerger Ana C Onuchic-Whitford Mao Youying Amy Kolb Daanya Salmanullah Evan Chen Amelie T van der Ven Jia Rao Hadas Ityel Steve Seltzsam Johanna M Rieke Jing Chen Asaf Vivante Daw-Yang Hwang Stefan Kohl Gabriel C Dworschak Tobias Hermle Mariëlle Alders Tobias Bartolomaeus Stuart B Bauer Michelle A Baum Eva H Brilstra Thomas D Challman Jacob Zyskind Carrie E Costin Katrina M Dipple Floor A Duijkers Marcia Ferguson David R Fitzpatrick Roger Fick Ian A Glass Peter J Hulick Antonie D Kline Ilona Krey Selvin Kumar Weining Lu Elysa J Marco Ingrid M Wentzensen Heather C Mefford Konrad Platzer Inna S Povolotskaya Juliann M Savatt Natalia V Shcherbakova Prabha Senguttuvan Audrey E Squire Deborah R Stein Isabelle Thiffault Victoria Y Voinova Michael J G Somers Michael A Ferguson Avram Z Traum Ghaleb H Daouk Ankana Daga Nancy M Rodig Paulien A Terhal Ellen van Binsbergen Loai A Eid Velibor Tasic Hila Milo Rasouly Tze Y Lim Dina F Ahram Ali G Gharavi Heiko M Reutter Heidi L Rehm Daniel G MacArthur Monkol Lek Kristen M Laricchia Richard P Lifton Hong Xu Shrikant M Mane Simone Sanna-Cherchi Andrew D Sharrocks Brian Raught Simon E Fisher Maxime Bouchard Mustafa K Khokha Shirlee Shril Friedhelm Hildebrandt

Am J Hum Genet 2020 10 4;107(4):727-742. Epub 2020 Sep 4.

Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA. Electronic address:

Congenital anomalies of the kidney and urinary tract (CAKUT) constitute one of the most frequent birth defects and represent the most common cause of chronic kidney disease in the first three decades of life. Despite the discovery of dozens of monogenic causes of CAKUT, most pathogenic pathways remain elusive. We performed whole-exome sequencing (WES) in 551 individuals with CAKUT and identified a heterozygous de novo stop-gain variant in ZMYM2 in two different families with CAKUT. Through collaboration, we identified in total 14 different heterozygous loss-of-function mutations in ZMYM2 in 15 unrelated families. Most mutations occurred de novo, indicating possible interference with reproductive function. Human disease features are replicated in X. tropicalis larvae with morpholino knockdowns, in which expression of truncated ZMYM2 proteins, based on individual mutations, failed to rescue renal and craniofacial defects. Moreover, heterozygous Zmym2-deficient mice recapitulated features of CAKUT with high penetrance. The ZMYM2 protein is a component of a transcriptional corepressor complex recently linked to the silencing of developmentally regulated endogenous retrovirus elements. Using protein-protein interaction assays, we show that ZMYM2 interacts with additional epigenetic silencing complexes, as well as confirming that it binds to FOXP1, a transcription factor that has also been linked to CAKUT. In summary, our findings establish that loss-of-function mutations of ZMYM2, and potentially that of other proteins in its interactome, as causes of human CAKUT, offering new routes for studying the pathogenesis of the disorder.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2020.08.013DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7536580PMC
October 2020

A second cohort of CHD3 patients expands the molecular mechanisms known to cause Snijders Blok-Campeau syndrome.

Eur J Hum Genet 2020 10 1;28(10):1422-1431. Epub 2020 Jun 1.

Children's Hospital of Philadelphia, Philadelphia, PA, USA.

There has been one previous report of a cohort of patients with variants in Chromodomain Helicase DNA-binding 3 (CHD3), now recognized as Snijders Blok-Campeau syndrome. However, with only three previously-reported patients with variants outside the ATPase/helicase domain, it was unclear if variants outside of this domain caused a clinically similar phenotype. We have analyzed 24 new patients with CHD3 variants, including nine outside the ATPase/helicase domain. All patients were detected with unbiased molecular genetic methods. There is not a significant difference in the clinical or facial features of patients with variants in or outside this domain. These additional patients further expand the clinical and molecular data associated with CHD3 variants. Importantly we conclude that there is not a significant difference in the phenotypic features of patients with various molecular disruptions, including whole gene deletions and duplications, and missense variants outside the ATPase/helicase domain. This data will aid both clinical geneticists and molecular geneticists in the diagnosis of this emerging syndrome.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41431-020-0654-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7608102PMC
October 2020

Pathogenic DDX3X Mutations Impair RNA Metabolism and Neurogenesis during Fetal Cortical Development.

Neuron 2020 05 4;106(3):404-420.e8. Epub 2020 Mar 4.

Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; Institute of Human Genetics and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA. Electronic address:

De novo germline mutations in the RNA helicase DDX3X account for 1%-3% of unexplained intellectual disability (ID) cases in females and are associated with autism, brain malformations, and epilepsy. Yet, the developmental and molecular mechanisms by which DDX3X mutations impair brain function are unknown. Here, we use human and mouse genetics and cell biological and biochemical approaches to elucidate mechanisms by which pathogenic DDX3X variants disrupt brain development. We report the largest clinical cohort to date with DDX3X mutations (n = 107), demonstrating a striking correlation between recurrent dominant missense mutations, polymicrogyria, and the most severe clinical outcomes. We show that Ddx3x controls cortical development by regulating neuron generation. Severe DDX3X missense mutations profoundly disrupt RNA helicase activity, induce ectopic RNA-protein granules in neural progenitors and neurons, and impair translation. Together, these results uncover key mechanisms underlying DDX3X syndrome and highlight aberrant RNA metabolism in the pathogenesis of neurodevelopmental disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuron.2020.01.042DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7331285PMC
May 2020

De Novo Variants Disturbing the Transactivation Capacity of POU3F3 Cause a Characteristic Neurodevelopmental Disorder.

Am J Hum Genet 2019 08 11;105(2):403-412. Epub 2019 Jul 11.

Language and Genetics Department, Max Planck Institute for Psycholinguistics, PO Box 310, 6500AH Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, PO Box 9104, 6500HE Nijmegen, the Netherlands. Electronic address:

POU3F3, also referred to as Brain-1, is a well-known transcription factor involved in the development of the central nervous system, but it has not previously been associated with a neurodevelopmental disorder. Here, we report the identification of 19 individuals with heterozygous POU3F3 disruptions, most of which are de novo variants. All individuals had developmental delays and/or intellectual disability and impairments in speech and language skills. Thirteen individuals had characteristic low-set, prominent, and/or cupped ears. Brain abnormalities were observed in seven of eleven MRI reports. POU3F3 is an intronless gene, insensitive to nonsense-mediated decay, and 13 individuals carried protein-truncating variants. All truncating variants that we tested in cellular models led to aberrant subcellular localization of the encoded protein. Luciferase assays demonstrated negative effects of these alleles on transcriptional activation of a reporter with a FOXP2-derived binding motif. In addition to the loss-of-function variants, five individuals had missense variants that clustered at specific positions within the functional domains, and one small in-frame deletion was identified. Two missense variants showed reduced transactivation capacity in our assays, whereas one variant displayed gain-of-function effects, suggesting a distinct pathophysiological mechanism. In bioluminescence resonance energy transfer (BRET) interaction assays, all the truncated POU3F3 versions that we tested had significantly impaired dimerization capacities, whereas all missense variants showed unaffected dimerization with wild-type POU3F3. Taken together, our identification and functional cell-based analyses of pathogenic variants in POU3F3, coupled with a clinical characterization, implicate disruptions of this gene in a characteristic neurodevelopmental disorder.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2019.06.007DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6698880PMC
August 2019

Author Correction: CHD3 helicase domain mutations cause a neurodevelopmental syndrome with macrocephaly and impaired speech and language.

Nat Commun 2019 May 2;10(1):2079. Epub 2019 May 2.

CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada.

The HTML and PDF versions of this Article were updated after publication to remove images of one individual from Figure 1.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-019-10161-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6497626PMC
May 2019

Mutation update for the SATB2 gene.

Hum Mutat 2019 08 18;40(8):1013-1029. Epub 2019 Jun 18.

Department of Biological Sciences, University of Massachusetts Lowell, Lowell, Massachusetts.

SATB2-associated syndrome (SAS) is an autosomal dominant neurodevelopmental disorder caused by alterations in the SATB2 gene. Here we present a review of published pathogenic variants in the SATB2 gene to date and report 38 novel alterations found in 57 additional previously unreported individuals. Overall, we present a compilation of 120 unique variants identified in 155 unrelated families ranging from single nucleotide coding variants to genomic rearrangements distributed throughout the entire coding region of SATB2. Single nucleotide variants predicted to result in the occurrence of a premature stop codon were the most commonly seen (51/120 = 42.5%) followed by missense variants (31/120 = 25.8%). We review the rather limited functional characterization of pathogenic variants and discuss current understanding of the consequences of the different molecular alterations. We present an expansive phenotypic review along with novel genotype-phenotype correlations. Lastly, we discuss current knowledge of animal models and present future prospects. This review should help provide better guidance for the care of individuals diagnosed with SAS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/humu.23771DOI Listing
August 2019

Author Correction: CHD3 helicase domain mutations cause a neurodevelopmental syndrome with macrocephaly and impaired speech and language.

Nat Commun 2019 02 15;10(1):883. Epub 2019 Feb 15.

CHU Sainte-Justine Research Center, Montreal, QC, H3T 1C5, Canada.

The original version of this Article contained an error in the spelling of the author Laurence Faivre, which was incorrectly given as Laurence Faive. This has now been corrected in both the PDF and HTML versions of the Article.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-019-08800-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6377600PMC
February 2019

CHD3 helicase domain mutations cause a neurodevelopmental syndrome with macrocephaly and impaired speech and language.

Nat Commun 2018 11 5;9(1):4619. Epub 2018 Nov 5.

CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada.

Chromatin remodeling is of crucial importance during brain development. Pathogenic alterations of several chromatin remodeling ATPases have been implicated in neurodevelopmental disorders. We describe an index case with a de novo missense mutation in CHD3, identified during whole genome sequencing of a cohort of children with rare speech disorders. To gain a comprehensive view of features associated with disruption of this gene, we use a genotype-driven approach, collecting and characterizing 35 individuals with de novo CHD3 mutations and overlapping phenotypes. Most mutations cluster within the ATPase/helicase domain of the encoded protein. Modeling their impact on the three-dimensional structure demonstrates disturbance of critical binding and interaction motifs. Experimental assays with six of the identified mutations show that a subset directly affects ATPase activity, and all but one yield alterations in chromatin remodeling. We implicate de novo CHD3 mutations in a syndrome characterized by intellectual disability, macrocephaly, and impaired speech and language.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-018-06014-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6218476PMC
November 2018

NBEA: Developmental disease gene with early generalized epilepsy phenotypes.

Ann Neurol 2018 11 25;84(5):788-795. Epub 2018 Oct 25.

Columbia University Medical Center, Institute for Genomic Medicine, New York, NY.

NBEA is a candidate gene for autism, and de novo variants have been reported in neurodevelopmental disease (NDD) cohorts. However, NBEA has not been rigorously evaluated as a disease gene, and associated phenotypes have not been delineated. We identified 24 de novo NBEA variants in patients with NDD, establishing NBEA as an NDD gene. Most patients had epilepsy with onset in the first few years of life, often characterized by generalized seizure types, including myoclonic and atonic seizures. Our data show a broader phenotypic spectrum than previously described, including a myoclonic-astatic epilepsy-like phenotype in a subset of patients. Ann Neurol 2018;84:796-803.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ana.25350DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6249120PMC
November 2018

De novo mutations in MED13, a component of the Mediator complex, are associated with a novel neurodevelopmental disorder.

Hum Genet 2018 May 8;137(5):375-388. Epub 2018 May 8.

HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA.

Many genetic causes of developmental delay and/or intellectual disability (DD/ID) are extremely rare, and robust discovery of these requires both large-scale DNA sequencing and data sharing. Here we describe a GeneMatcher collaboration which led to a cohort of 13 affected individuals harboring protein-altering variants, 11 of which are de novo, in MED13; the only inherited variant was transmitted to an affected child from an affected mother. All patients had intellectual disability and/or developmental delays, including speech delays or disorders. Other features that were reported in two or more patients include autism spectrum disorder, attention deficit hyperactivity disorder, optic nerve abnormalities, Duane anomaly, hypotonia, mild congenital heart abnormalities, and dysmorphisms. Six affected individuals had mutations that are predicted to truncate the MED13 protein, six had missense mutations, and one had an in-frame-deletion of one amino acid. Out of the seven non-truncating mutations, six clustered in two specific locations of the MED13 protein: an N-terminal and C-terminal region. The four N-terminal clustering mutations affect two adjacent amino acids that are known to be involved in MED13 ubiquitination and degradation, p.Thr326 and p.Pro327. MED13 is a component of the CDK8-kinase module that can reversibly bind Mediator, a multi-protein complex that is required for Polymerase II transcription initiation. Mutations in several other genes encoding subunits of Mediator have been previously shown to associate with DD/ID, including MED13L, a paralog of MED13. Thus, our findings add MED13 to the group of CDK8-kinase module-associated disease genes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00439-018-1887-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5973976PMC
May 2018

Mutations in DDX3X Are a Common Cause of Unexplained Intellectual Disability with Gender-Specific Effects on Wnt Signaling.

Am J Hum Genet 2015 Aug 30;97(2):343-52. Epub 2015 Jul 30.

Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands. Electronic address:

Intellectual disability (ID) affects approximately 1%-3% of humans with a gender bias toward males. Previous studies have identified mutations in more than 100 genes on the X chromosome in males with ID, but there is less evidence for de novo mutations on the X chromosome causing ID in females. In this study we present 35 unique deleterious de novo mutations in DDX3X identified by whole exome sequencing in 38 females with ID and various other features including hypotonia, movement disorders, behavior problems, corpus callosum hypoplasia, and epilepsy. Based on our findings, mutations in DDX3X are one of the more common causes of ID, accounting for 1%-3% of unexplained ID in females. Although no de novo DDX3X mutations were identified in males, we present three families with segregating missense mutations in DDX3X, suggestive of an X-linked recessive inheritance pattern. In these families, all males with the DDX3X variant had ID, whereas carrier females were unaffected. To explore the pathogenic mechanisms accounting for the differences in disease transmission and phenotype between affected females and affected males with DDX3X missense variants, we used canonical Wnt defects in zebrafish as a surrogate measure of DDX3X function in vivo. We demonstrate a consistent loss-of-function effect of all tested de novo mutations on the Wnt pathway, and we further show a differential effect by gender. The differential activity possibly reflects a dose-dependent effect of DDX3X expression in the context of functional mosaic females versus one-copy males, which reflects the complex biological nature of DDX3X mutations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2015.07.004DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4573244PMC
August 2015