Publications by authors named "Long V Pham"

14 Publications

  • Page 1 of 1

Versatile SARS-CoV-2 Reverse-Genetics Systems for the Study of Antiviral Resistance and Replication.

Viruses 2022 01 18;14(2). Epub 2022 Jan 18.

Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, 2650 Hvidovre, Denmark.

The COVID-19 pandemic continues to threaten healthcare systems worldwide due to the limited access to vaccines, suboptimal treatment options, and the continuous emergence of new and more transmissible SARS-CoV-2 variants. Reverse-genetics studies of viral genes and mutations have proven highly valuable in advancing basic virus research, leading to the development of therapeutics. We developed a functional and highly versatile full-length SARS-CoV-2 infectious system by cloning the sequence of a COVID-19 associated virus isolate (DK-AHH1) into a bacterial artificial chromosome (BAC). Viruses recovered after RNA-transfection of in vitro transcripts into Vero E6 cells showed growth kinetics and remdesivir susceptibility similar to the DK-AHH1 virus isolate. Insertion of reporter genes, green fluorescent protein, and nanoluciferase into the ORF7 genomic region led to high levels of reporter activity, which facilitated high throughput treatment experiments. We found that putative coronavirus remdesivir resistance-associated substitutions F480L and V570L-and naturally found polymorphisms A97V, P323L, and N491S, all in nsp12-did not decrease SARS-CoV-2 susceptibility to remdesivir. A nanoluciferase reporter clone with deletion of spike (S), envelope (E), and membrane (M) proteins exhibited high levels of transient replication, was inhibited by remdesivir, and therefore could function as an efficient non-infectious subgenomic replicon system. The developed SARS-CoV-2 reverse-genetics systems, including recombinants to modify infectious viruses and non-infectious subgenomic replicons with autonomous genomic RNA replication, will permit high-throughput cell culture studies-providing fundamental understanding of basic biology of this coronavirus. We have proven the utility of the systems in rapidly introducing mutations in nsp12 and studying their effect on the efficacy of remdesivir, which is used worldwide for the treatment of COVID-19. Our system provides a platform to effectively test the antiviral activity of drugs and the phenotype of SARS-CoV-2 mutants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/v14020172DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8878408PMC
January 2022

In vitro efficacy of artemisinin-based treatments against SARS-CoV-2.

Sci Rep 2021 07 16;11(1):14571. Epub 2021 Jul 16.

Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.

Effective and affordable treatments for patients suffering from coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are needed. We report in vitro efficacy of Artemisia annua extracts as well as artemisinin, artesunate, and artemether against SARS-CoV-2. The latter two are approved active pharmaceutical ingredients of anti-malarial drugs. Concentration-response antiviral treatment assays, based on immunostaining of SARS-CoV-2 spike glycoprotein, revealed that treatment with all studied extracts and compounds inhibited SARS-CoV-2 infection of VeroE6 cells, human hepatoma Huh7.5 cells and human lung cancer A549-hACE2 cells, without obvious influence of the cell type on antiviral efficacy. In treatment assays, artesunate proved most potent (range of 50% effective concentrations (EC) in different cell types: 7-12 µg/mL), followed by artemether (53-98 µg/mL), A. annua extracts (83-260 µg/mL) and artemisinin (151 to at least 208 µg/mL). The selectivity indices (SI), calculated based on treatment and cell viability assays, were mostly below 10 (range 2 to 54), suggesting a small therapeutic window. Time-of-addition experiments in A549-hACE2 cells revealed that artesunate targeted SARS-CoV-2 at the post-entry level. Peak plasma concentrations of artesunate exceeding EC values can be achieved. Clinical studies are required to further evaluate the utility of these compounds as COVID-19 treatment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-021-93361-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8285423PMC
July 2021

Hepatitis C Virus Protease Inhibitors Show Differential Efficacy and Interactions with Remdesivir for Treatment of SARS-CoV-2 .

Antimicrob Agents Chemother 2021 08 17;65(9):e0268020. Epub 2021 Aug 17.

Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovregrid.5254.6, Hvidovre, Denmark.

Antivirals targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could improve treatment of COVID-19. We evaluated the efficacy of clinically relevant hepatitis C virus (HCV) NS3 protease inhibitors (PIs) against SARS-CoV-2 and their interactions with remdesivir, the only direct-acting antiviral approved for COVID-19 treatment. HCV PIs showed differential potency in short-term treatment assays based on the detection of SARS-CoV-2 spike protein in Vero E6 cells. Linear PIs boceprevir, telaprevir, and narlaprevir had 50% effective concentrations (EC) of ∼40 μM. Among the macrocyclic PIs, simeprevir had the highest (EC, 15 μM) and glecaprevir the lowest (EC, >178 μM) potency, with paritaprevir, grazoprevir, voxilaprevir, vaniprevir, danoprevir, and deldeprevir in between. Acyclic PIs asunaprevir and faldaprevir had ECs of 72 and 23 μM, respectively. ACH-806, inhibiting the HCV NS4A protease cofactor, had an EC of 46 μM. Similar and slightly increased PI potencies were found in human hepatoma Huh7.5 cells and human lung carcinoma A549-hACE2 cells, respectively. Selectivity indexes based on antiviral and cell viability assays were highest for linear PIs. In short-term treatments, combination of macrocyclic but not linear PIs with remdesivir showed synergism in Vero E6 and A549-hACE2 cells. Longer-term treatment of infected Vero E6 and A549-hACE2 cells with 1-fold EC PI revealed minor differences in the barrier to SARS-CoV-2 escape. Viral suppression was achieved with 3- to 8-fold EC boceprevir or 1-fold EC simeprevir or grazoprevir, but not boceprevir, in combination with 0.4- to 0.8-fold EC remdesivir; these concentrations did not lead to viral suppression in single treatments. This study could inform the development and application of protease inhibitors for optimized antiviral treatments of COVID-19.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/AAC.02680-20DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8370243PMC
August 2021

Overcoming Culture Restriction for SARS-CoV-2 in Human Cells Facilitates the Screening of Compounds Inhibiting Viral Replication.

Antimicrob Agents Chemother 2021 06 17;65(7):e0009721. Epub 2021 Jun 17.

Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Copenhagen, Denmark.

Efforts to mitigate the coronavirus disease 2019 (COVID-19) pandemic include the screening of existing antiviral molecules that could be repurposed to treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Although SARS-CoV-2 replicates and propagates efficiently in African green monkey kidney (Vero) cells, antivirals such as nucleos(t)ide analogs (NUCs) often show decreased activity in these cells due to inefficient metabolization. SARS-CoV-2 exhibits low viability in human cells in culture. Here, serial passages of a SARS-CoV-2 isolate (original-SARS2) in the human hepatoma cell clone Huh7.5 led to the selection of a variant (adapted-SARS2) with significantly improved infectivity in human liver (Huh7 and Huh7.5) and lung cancer (unmodified Calu-1 and A549) cells. The adapted virus exhibited mutations in the spike protein, including a 9-amino-acid deletion and 3 amino acid changes (E484D, P812R, and Q954H). E484D also emerged in Vero E6-cultured viruses that became viable in A549 cells. Original and adapted viruses were susceptible to scavenger receptor class B type 1 (SR-B1) receptor blocking, and adapted-SARS2 exhibited significantly less dependence on ACE2. Both variants were similarly neutralized by COVID-19 convalescent-phase plasma, but adapted-SARS2 exhibited increased susceptibility to exogenous type I interferon. Remdesivir inhibited original- and adapted-SARS2 similarly, demonstrating the utility of the system for the screening of NUCs. Among the tested NUCs, only remdesivir, molnupiravir, and, to a limited extent, galidesivir showed antiviral effects across human cell lines, whereas sofosbuvir, ribavirin, and favipiravir had no apparent activity. Analogously to the emergence of spike mutations , the spike protein is under intense adaptive selection pressure in cell culture. Our results indicate that the emergence of spike mutations will most likely not affect the activity of remdesivir.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/AAC.00097-21DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8406809PMC
June 2021

HCV genome-wide analysis for development of efficient culture systems and unravelling of antiviral resistance in genotype 4.

Gut 2022 03 8;71(3):627-642. Epub 2021 Apr 8.

Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

Objective: HCV-genotype 4 infections are a major cause of liver diseases in the Middle East/Africa with certain subtypes associated with increased risk of direct-acting antiviral (DAA) treatment failures. We aimed at developing infectious genotype 4 cell culture systems to understand the evolutionary genetic landscapes of antiviral resistance, which can help preserve the future efficacy of DAA-based therapy.

Design: HCV recombinants were tested in liver-derived cells. Long-term coculture with DAAs served to induce antiviral-resistance phenotypes. Next-generation sequencing (NGS) of the entire HCV-coding sequence identified mutation networks. Resistance-associated substitutions (RAS) were studied using reverse-genetics.

Result: The in-vivo infectious ED43(4a) clone was adapted in Huh7.5 cells, using substitutions identified in ED43(Core-NS5A)/JFH1-chimeric viruses combined with selected NS5B-changes. NGS, and linkage analysis, permitted identification of multiple genetic branches emerging during culture adaptation, one of which had 31 substitutions leading to robust replication/propagation. Treatment of culture-adapted ED43 with nine clinically relevant protease-DAA, NS5A-DAA and NS5B-DAA led to complex dynamics of drug-target-specific RAS with coselection of genome-wide substitutions. Approved DAA combinations were efficient against the original virus, but not against variants with RAS in corresponding drug targets. However, retreatment with glecaprevir/pibrentasvir remained efficient against NS5A inhibitor and sofosbuvir resistant variants. Recombinants with specific RAS at NS3-156, NS5A-28, 30, 31 and 93 and NS5B-282 were viable, but NS3-A156M and NS5A-L30Δ (deletion) led to attenuated phenotypes.

Conclusion: Rapidly emerging complex evolutionary landscapes of mutations define the persistence of HCV-RASs conferring resistance levels leading to treatment failure in genotype 4. The high barrier to resistance of glecaprevir/pibrentasvir could prevent persistence and propagation of antiviral resistance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/gutjnl-2020-323585DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8862099PMC
March 2022

Evolutionary Pathways to Persistence of Highly Fit and Resistant Hepatitis C Virus Protease Inhibitor Escape Variants.

Hepatology 2019 09 5;70(3):771-787. Epub 2019 Jun 5.

Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

Protease inhibitors (PIs) are important components of treatment regimens for patients with chronic hepatitis C virus (HCV) infection. However, emergence and persistence of antiviral resistance could reduce their efficacy. Thus, defining resistance determinants is highly relevant for efforts to control HCV. Here, we investigated patterns of PI resistance-associated substitutions (RASs) for the major HCV genotypes and viral determinants for persistence of key RASs. We identified protease position 156 as a RAS hotspot for genotype 1-4, but not 5 and 6, escape variants by resistance profiling using PIs grazoprevir and paritaprevir in infectious cell culture systems. However, except for genotype 3, engineered 156-RASs were not maintained. For genotypes 1 and 2, persistence of 156-RASs depended on genome-wide substitution networks, co-selected under continued PI treatment and identified by next-generation sequencing with substitution linkage and haplotype reconstruction. Persistence of A156T for genotype 1 relied on compensatory substitutions increasing replication and assembly. For genotype 2, initial selection of A156V facilitated transition to 156L, persisting without compensatory substitutions. The developed genotype 1, 2, and 3 variants with persistent 156-RASs had exceptionally high fitness and resistance to grazoprevir, paritaprevir, glecaprevir, and voxilaprevir. A156T dominated in genotype 1 glecaprevir and voxilaprevir escape variants, and pre-existing A156T facilitated genotype 1 escape from clinically relevant combination treatments with grazoprevir/elbasvir and glecaprevir/pibrentasvir. In genotype 1 infected patients with treatment failure and 156-RASs, we observed genome-wide selection of substitutions under treatment. Conclusion: Comprehensive PI resistance profiling for HCV genotypes 1-6 revealed 156-RASs as key determinants of high-level resistance across clinically relevant PIs. We obtained in vitro proof of concept for persistence of highly fit genotype 1-3 156-variants, which might pose a threat to clinically relevant combination treatments.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/hep.30647DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6772116PMC
September 2019

HCV genotype 1-6 NS3 residue 80 substitutions impact protease inhibitor activity and promote viral escape.

J Hepatol 2019 03 3;70(3):388-397. Epub 2018 Nov 3.

Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark. Electronic address:

Background & Aims: Protease inhibitors (PIs) are of central importance in the treatment of patients with chronic hepatitis C virus (HCV) infection. HCV NS3 protease (NS3P) position 80 displays polymorphisms associated with resistance to the PI simeprevir for HCV genotype 1a. We investigated the effects of position-80-substitutions on fitness and PI-resistance for HCV genotypes 1-6, and analyzed evolutionary mechanisms underlying viral escape mediated by pre-existing Q80K.

Methods: The fitness of infectious NS3P recombinants of HCV genotypes 1-6, with engineered position-80-substitutions, was studied by comparison of viral spread kinetics in Huh-7.5 cells in culture. Median effective concentration (EC50) and fold resistance for PIs simeprevir, asunaprevir, paritaprevir, grazoprevir, glecaprevir and voxilaprevir were determined in short-term treatment assays. Viral escape was studied by long-term treatment of genotype 1a recombinants with simeprevir, grazoprevir, glecaprevir and voxilaprevir and of genotype 3a recombinants with glecaprevir and voxilaprevir, next generation sequencing, NS3P substitution linkage and haplotype analysis.

Results: Among tested PIs, only glecaprevir and voxilaprevir showed pan-genotypic activity against the original genotype 1-6 culture viruses. Variants with position-80-substitutions were all viable, but fitness depended on the specific substitution and the HCV isolate. Q80K conferred resistance to simeprevir across genotypes but had only minor effects on the activity of the remaining PIs. For genotype 1a, pre-existing Q80K mediated accelerated escape from simeprevir, grazoprevir and to a lesser extent glecaprevir, but not voxilaprevir. For genotype 3a, Q80K mediated accelerated escape from glecaprevir and voxilaprevir. Escape was mediated by rapid and genotype-, PI- and PI-concentration-dependent co-selection of clinically relevant resistance associated substitutions.

Conclusions: Position-80-substitutions had relatively low fitness cost and the potential to promote HCV escape from clinically relevant PIs in vitro, despite having a minor impact on results in classical short-term resistance assays.

Lay Summary: Among all clinically relevant hepatitis C virus protease inhibitors, voxilaprevir and glecaprevir showed the highest and most uniform activity against cell culture infectious hepatitis C virus with genotype 1-6 proteases. Naturally occurring amino acid changes at protease position 80 had low fitness cost and influenced sensitivity to simeprevir, but not to other protease inhibitors in short-term treatment assays. Nevertheless, the pre-existing change Q80K had the potential to promote viral escape from protease inhibitors during long-term treatment by rapid co-selection of additional resistance changes, detected by next generation sequencing.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhep.2018.10.031DOI Listing
March 2019

HCV Genotype 6a Escape From and Resistance to Velpatasvir, Pibrentasvir, and Sofosbuvir in Robust Infectious Cell Culture Models.

Gastroenterology 2018 06 15;154(8):2194-2208.e12. Epub 2018 Feb 15.

Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. Electronic address:

Background & Aims: Chronic liver diseases caused by hepatitis C virus (HCV) genotype 6 are prevalent in Asia, and millions of people require treatment with direct-acting antiviral regimens, such as NS5A inhibitor velpatasvir combined with the NS5B polymerase inhibitor sofosbuvir. We developed infectious cell culture models of HCV genotype 6a infection to study the effects of these inhibitors and the development of resistance.

Methods: The consensus sequences of strains HK2 (MG717925) and HK6a (MG717928), originating from serum of patients with chronic HCV infection, were determined by Sanger sequencing of genomes amplified by reverse-transcription polymerase chain reaction. In vitro noninfectious full-length clones of these 6a strains were subsequently adapted in Huh7.5 cells, primarily by using substitutions identified in JFH1-based Core-NS5A and Core-NS5B genotype 6a recombinants. We studied the efficacy of NS5A and NS5B inhibitors in concentration-response assays. We examined the effects of long-term culture of Huh7.5 cells incubated with velpatasvir and sofosbuvir singly or combined following infection with passaged full-length HK2 or HK6a recombinant viruses. Resistance-associated substitutions (RAS) were identified by Sanger and next-generation sequencing, and their effects on viral fitness and in drug susceptibility were determined in reverse-genetic experiments.

Results: Adapted full-length HCV genotype 6a recombinants HK2cc and HK6acc had fast propagation kinetics and high infectivity titers. Compared with an HCV genotype 1a recombinant, HCV genotype 6a recombinants of strains HK2 and HK6a were equally sensitive to daclatasvir, elbasvir, velpatasvir, pibrentasvir, and sofosbuvir, but less sensitive to ledipasvir, ombitasvir, and dasabuvir. Long-term exposure of HCV genotype 6a-infected Huh7.5 cells with a combination of velpatasvir and sofosbuvir resulted in clearance of the virus, but the virus escaped the effects of single inhibitors via emergence of the RAS L31V in NS5A (conferring resistance to velpatasvir) and S282T in NS5B (conferring resistance to sofosbuvir). Engineered recombinant genotype 6a viruses with single RAS mediated resistance to velpatasvir or sofosbuvir. HCV genotype 6a viruses with RAS NS5A-L31V or NS5B-S282T were however, able to propagate and escape in Huh7.5 cells exposed to the combination of velpatasvir and sofosbuvir. Further, HCV genotype 6a with NS5A-L31V was able to propagate and escape in the presence of pibrentasvir with emergence of NS5A-L28S, conferring a high level of resistance to this inhibitor.

Conclusions: Strains of HCV genotype 6a isolated from patients can be adapted to propagate in cultured cells, permitting studies of the complete life cycle for this important genotype. The combination of velpatasvir and sofosbuvir is required to block propagation of original HCV genotype 6a, which quickly becomes resistant to single inhibitors via the rapid emergence and persistence of RAS. These features of HCV genotype 6a could compromise treatment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1053/j.gastro.2018.02.017DOI Listing
June 2018

Efficacy of NS5A Inhibitors Against Hepatitis C Virus Genotypes 1-7 and Escape Variants.

Gastroenterology 2018 04 22;154(5):1435-1448. Epub 2017 Dec 22.

Copenhagen Hepatitis C Program, Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark. Electronic address:

Background & Aims: Inhibitors of the hepatitis C virus (HCV) NS5A protein are a key component of effective treatment regimens, but the genetic heterogeneity of HCV has limited the efficacy of these agents and mutations lead to resistance. We directly compared the efficacy of all clinically relevant NS5A inhibitors against HCV genotype 1-7 prototype isolates and resistant escape variants, and investigated the effects of pre-existing resistance-associated substitutions (RAS) on HCV escape from treatment.

Methods: We measured the efficacy of different concentrations of daclatasvir, ledipasvir, ombitasvir, elbasvir, ruzasvir, velpatasvir, and pibrentasvir in cultured cells infected with HCV recombinants expressing genotype 1-7 NS5A proteins with or without RAS. We engineered HCV variants that included RAS identified in escape experiments, using recombinants with or without T/Y93H and daclatasvir, or that contained RAS previously reported from patients.

Results: NS5A inhibitors had varying levels of efficacy against original and resistant viruses. Only velpatasvir and pibrentasvir had uniform high activity against all HCV genotypes tested. RAS hotspots in NS5A were found at amino acids 28, 30, 31, and 93. Engineered escape variants had high levels of fitness. Pibrentasvir had the highest level of efficacy against variants; viruses with RAS at amino acids 28, 30, or 31 had no apparent resistance to pibrentasvir, and HCV with RAS at amino acid 93 had a low level of resistance to this drug. However, specific combinations of RAS and deletion of amino acid 32 led to significant resistance to pibrentasvir. For the remaining NS5A inhibitors tested, RAS at amino acids 28 and 93 led to high levels of resistance. Among these inhibitors, velpatasvir was more effective against variants with RAS at amino acid 30 and some variants with RAS at amino acid 31 than the other agents. Variants with the pre-existing RAS T/Y93H acquired additional NS5A changes during escape experiments, resulting in HCV variants with specific combinations of RAS, showing high fitness and high resistance.

Conclusions: We performed a comprehensive comparison of the efficacy of the 7 clinically relevant inhibitors of HCV NS5A and identified variants associated with resistance to each agent. These findings could improve treatment of patients with HCV infection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1053/j.gastro.2017.12.015DOI Listing
April 2018

Rad51 Interacts with Non-structural 3 Protein of Hepatitis C Virus and Regulates Viral Production.

Front Microbiol 2017 6;8:1249. Epub 2017 Jul 6.

Department of Biomedical Gerontology, Graduate School of Hallym UniversityChuncheon, South Korea.

Hepatitis C virus (HCV) is a leading cause of chronic liver disease affecting over 170 million people worldwide. Chronic infection with HCV progresses to liver fibrosis, cirrhosis, and hepatocellular carcinoma. HCV exploits host cellular factors for viral propagation. To investigate the cellular factors required for HCV propagation, we screened a siRNA library targeting human cell cycle genes using cell culture grown HCV-infected cells. In the present study, we selected and characterized a gene encoding Rad51. Rad51, a member of a conserved recombinase family, is an essential factor for homologous recombination and repair of double-strand DNA breaks. We demonstrated that siRNA-mediated knockdown of Rad51 significantly inhibited HCV propagation without affecting HCV RNA replication. Silencing of Rad51 impaired secretion of infectious HCV particles and thus intracellular viruses were accumulated. We showed that HCV NS3 specifically interacted with Rad51 and accumulated Rad51 in the cytosol. Furthermore, Rad51 was coprecipitated with NS3 and HCV RNA. By employing membrane flotation and protease protection assays, we also demonstrated that Rad51 was co-fractionated with HCV NS3 on the lipid raft. These data indicate that Rad51 may be a component of the HCV RNA replication complex. Collectively, these data suggest that HCV may exploit cellular Rad51 to promote viral propagation and thus Rad51 may be a potential therapeutic target for HCV.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fmicb.2017.01249DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5498509PMC
July 2017

Efficient Hepatitis C Virus Genotype 1b Core-NS5A Recombinants Permit Efficacy Testing of Protease and NS5A Inhibitors.

Antimicrob Agents Chemother 2017 06 24;61(6). Epub 2017 May 24.

Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital, and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

Hepatitis C virus (HCV) strains belong to seven genotypes with numerous subtypes that respond differently to antiviral therapies. Genotype 1, and primarily subtype 1b, is the most prevalent genotype worldwide. The development of recombinant HCV infectious cell culture systems for different variants, permitted by the high replication capacity of strain JFH1 (genotype 2a), has advanced efficacy and resistance testing of antivirals. However, efficient infectious JFH1-based cell cultures of subtype 1b are limited and comprise only the 5' untranslated region (5'UTR)-NS2, NS4A, or NS5A regions. Importantly, it has not been possible to develop efficient 1b infectious systems expressing the NS3/4A protease, an important target of direct-acting antivirals. We developed efficient infectious JFH1-based cultures with genotype 1b core-NS5A sequences of strains DH1, Con1, and J4 by using previously identified HCV cell culture adaptive substitutions A1226G, R1496L, and Q1773H. These viruses spread efficiently in Huh7.5 cells by acquiring additional adaptive substitutions, and final recombinants yielded peak supernatant infectivity titers of 4 to 5 log focus-forming units (FFU)/ml. We subsequently succeeded in adapting a JFH1-based 5'UTR-NS5A DH1 recombinant to efficient growth in cell culture. We evaluated the efficacy of clinically relevant NS3/4A protease and NS5A inhibitors against the novel genotype 1b viruses, as well as against previously developed 1a viruses. The inhibitors were efficient against all tested genotype 1 viruses, with NS5A inhibitors showing half-maximal effective concentrations several orders of magnitude lower than NS3/4A protease inhibitors. In summary, the developed HCV genotype 1b culture systems represent valuable tools for assessing the efficacy of various classes of antivirals and for other virological studies requiring genotype 1b infectious viruses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/AAC.00037-17DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5444172PMC
June 2017

Stearoyl coenzyme A desaturase 1 is associated with hepatitis C virus replication complex and regulates viral replication.

J Virol 2014 Nov 13;88(21):12311-25. Epub 2014 Aug 13.

National Research Laboratory of Hepatitis C Virus and Ilsong Institute of Life Science, Hallym University, Anyang, South Korea

Unlabelled: The hepatitis C virus (HCV) life cycle is tightly regulated by lipid metabolism of host cells. In order to identify host factors involved in HCV propagation, we have recently screened a small interfering RNA (siRNA) library targeting host genes that control lipid metabolism and lipid droplet formation using cell culture-grown HCV (HCVcc)-infected cells. We selected and characterized the gene encoding stearoyl coenzyme A (CoA) desaturase 1 (SCD1). siRNA-mediated knockdown or pharmacological inhibition of SCD1 abrogated HCV replication in both subgenomic replicon and Jc1-infected cells, while exogenous supplementation of either oleate or palmitoleate, products of SCD1 activity, resurrected HCV replication in SCD1 knockdown cells. SCD1 was coimmunoprecipitated with HCV nonstructural proteins and colocalized with both double-stranded RNA (dsRNA) and HCV nonstructural proteins, indicating that SCD1 is associated with HCV replication complex. Moreover, SCD1 was fractionated and enriched with HCV nonstructural proteins at detergent-resistant membrane. Electron microscopy data showed that SCD1 is required for NS4B-mediated intracellular membrane rearrangement. These data further support the idea that SCD1 is associated with HCV replication complex and that its products may contribute to the proper formation and maintenance of membranous web structures in HCV replication complex. Collectively, these data suggest that manipulation of SCD1 activity may represent a novel host-targeted antiviral strategy for the treatment of HCV infection.

Importance: Stearoyl coenzyme A (CoA) desaturase 1 (SCD1), a liver-specific enzyme, regulates hepatitis C virus (HCV) replication through its enzyme activity. HCV nonstructural proteins are associated with SCD1 at detergent-resistant membranes, and SCD1 is enriched on the lipid raft by HCV infection. Therein, SCD1 supports NS4B-mediated membrane rearrangement to provide a suitable microenvironment for HCV replication. We demonstrated that either genetic or chemical knockdown of SCD1 abrogated HCV replication in both replicon cells and HCV-infected cells. These findings provide novel mechanistic insights into the roles of SCD1 in HCV replication.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/JVI.01678-14DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4248942PMC
November 2014

Modulation of mitogen-activated protein kinase-activated protein kinase 3 by hepatitis C virus core protein.

J Virol 2013 May 13;87(10):5718-31. Epub 2013 Mar 13.

National Research Laboratory of Hepatitis C Virus and Ilsong Institute of Life Science, Hallym University, Anyang, South Korea.

Hepatitis C virus (HCV) is highly dependent on cellular proteins for its own propagation. In order to identify the cellular factors involved in HCV propagation, we performed protein microarray assays using the HCV core protein as a probe. Of ~9,000 host proteins immobilized in a microarray, approximately 100 cellular proteins were identified as HCV core-interacting partners. Of these candidates, mitogen-activated protein kinase-activated protein kinase 3 (MAPKAPK3) was selected for further characterization. MAPKAPK3 is a serine/threonine protein kinase that is activated by stress and growth inducers. Binding of HCV core to MAPKAPK3 was confirmed by in vitro pulldown assay and further verified by coimmunoprecipitation assay. HCV core protein interacted with MAPKAPK3 through amino acid residues 41 to 75 of core and the N-terminal half of kinase domain of MAPKAPK3. In addition, both RNA and protein levels of MAPKAPK3 were elevated in both HCV subgenomic replicon cells and cell culture-derived HCV (HCVcc)-infected cells. Silencing of MAPKAPK3 expression resulted in decreases in both protein and HCV infectivity levels but not in the intracellular HCV RNA level. We showed that MAPKAPK3 increased HCV IRES-mediated translation and MAPKAPK3-dependent HCV IRES activity was further increased by core protein. These data suggest that HCV core may modulate MAPKAPK3 to facilitate its own propagation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/JVI.03353-12DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3648169PMC
May 2013

Hepatitis C virus non-structural 5B protein interacts with cyclin A2 and regulates viral propagation.

J Hepatol 2012 Nov 14;57(5):960-6. Epub 2012 Jul 14.

National Research Laboratory of Hepatitis C Virus, Ilsong Institute of Life Science, Hallym University, Anyang 431-060, Republic of Korea.

Background & Aims: Hepatitis C virus (HCV) requires host cellular proteins for its own propagation. To identify the cellular factors necessary for HCV propagation, we have recently screened the small interfering RNA (siRNA) library targeting cell cycle genes using cell culture grown HCV (HCVcc)-infected cells. In the current study, we have selected and characterized the gene encoding Cyclin A2 (CycA2). Deregulation of CycA2 has been implicated in many types of cancers, including hepatocellular carcinoma.

Methods: The effects of CycA2 on HCV propagation were investigated by siRNA-mediated knockdown assay, in vitro and in vivo protein binding assays, luciferase reporter gene assay, and immunoblot assay.

Results: We showed that siRNA-mediated depletion of CycA2 significantly inhibited HCV replication in both HCV subgenomic replicon cells and HCVcc-infected cells. Furthermore, HCV non-structural 5B (NS5B) specifically interacted with CycA2 in vitro and in vivo. Protein interaction was mediated through the cyclin box of CycA2 and the palm domain of NS5B. We further showed that R/HxL motif in the palm domain of HCV NS5B mediated protein interaction with CycA2 and this interaction was necessary for HCV replication. Moreover, we demonstrated that tylophorine, the natural plant product exerting a CycA2 inhibitory function, abrogated HCV replication.

Conclusions: HCV regulates CycA2 via NS5B protein for its own propagation. In addition, tylophorine may be a potential therapeutic agent for HCV.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhep.2012.07.006DOI Listing
November 2012
-->