Publications by authors named "Lisa Epple"

2 Publications

  • Page 1 of 1

Organization of the central nervous system and innervation of cephalic sensory structures in the water bear Echiniscus testudo (Tardigrada: Heterotardigrada) revisited.

J Morphol 2021 Jun 15. Epub 2021 Jun 15.

Department of Zoology, Institute of Biology, University of Kassel, Kassel, Germany.

The tardigrade brain has been the topic of several neuroanatomical studies, as it is key to understanding the evolution of the central nervous systems in Panarthropoda (Tardigrada + Onychophora + Arthropoda). The gross morphology of the brain seems to be well conserved across tardigrades despite often disparate morphologies of their heads and cephalic sensory structures. As such, the general shape of the brain and its major connections to the rest of the central nervous system have been mapped out already by early tardigradologists. Despite subsequent investigations primarily based on transmission electron microscopy or immunohistochemistry, characterization of the different regions of the tardigrade brain has progressed relatively slowly and open questions remain. In an attempt to improve our understanding of different brain regions, we reinvestigated the central nervous system of the heterotardigrade Echiniscus testudo using anti-synapsin and anti-acetylated α-tubulin immunohistochemistry in order to visualize the number and position of tracts, commissures, and neuropils. Our data revealed five major synapsin-immunoreactive domains along the body: a large unitary, horseshoe-shaped neuropil in the head and four neuropils in the trunk ganglia, supporting the hypothesis that the dorsal brain is serially homologous with the ventral trunk ganglia. At the same time, the pattern of anti-synapsin and anti-tubulin immunoreactivity differs between the ganglia, adding to the existing evidence that each of the four trunk ganglia is unique in its morphology. Anti-tubulin labeling further revealed two commissures within the central brain neuropil, one of which is forked, and additional sets of extracerebral cephalic commissures associated with the stomodeal nervous system and the ventral cell cluster. Furthermore, our results showing the innervation of each of the cephalic sensilla in E. testudo support the homology of subsets of these structures with the sensory fields of eutardigrades.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmor.21386DOI Listing
June 2021

Miniaturization of tardigrades (water bears): Morphological and genomic perspectives.

Arthropod Struct Dev 2019 Jan 3;48:12-19. Epub 2018 Dec 3.

Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Straße 40, Kassel, D-34132, Germany. Electronic address:

Tardigrades form a monophyletic group of microscopic ecdysozoans best known for surviving extreme environmental conditions. Due to their key phylogenetic position as a subgroup of the Panarthropoda, understanding tardigrade biology is important for comparative studies with related groups like Arthropoda. Panarthropods - and Ecdysozoa as a whole - likely evolved from macroscopic ancestors, with several taxa becoming secondarily miniaturized. Morphological and genomic evidence likewise points to a miniaturized tardigrade ancestor. The five-segmented tardigrade body typically measures less than 1 mm in length and consists of only about 1000 cells. Most organs comprise a relatively small number of cells, with the highest proportion belonging to the central nervous system, while muscles are reduced to a single cell each. Similarly, fully sequenced genomes of three tardigrade species - together with Hox gene expression data - point to extensive modifications, rearrangements, and major losses of genes and even a large body region. Parallels are evident with related ecdysozoans that may have also undergone genomic reductions, such as the nematode Caenorhabditis elegans. We interpret these data together as evidence of miniaturization in the tardigrade lineage, while cautioning that the effects of miniaturization may manifest in different ways depending on the organ or organ system under examination.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.asd.2018.11.006DOI Listing
January 2019
-->