Publications by authors named "Lisa A Liotta"

2 Publications

  • Page 1 of 1

Benzimidazole-2-pyrazole HIF Prolyl 4-Hydroxylase Inhibitors as Oral Erythropoietin Secretagogues.

ACS Med Chem Lett 2010 Dec 5;1(9):526-9. Epub 2010 Oct 5.

Johnson & Johnson Pharmaceutical Research and Development, L.L.C, 3210 Merryfield Row, San Diego, California 92121, United States.

HIF prolyl 4-hydroxylases (PHD) are a family of enzymes that mediate key physiological responses to hypoxia by modulating the levels of hypoxia inducible factor 1-α (HIF1α). Certain benzimidazole-2-pyrazole carboxylates were discovered to be PHD2 inhibitors using ligand- and structure-based methods and found to be potent, orally efficacious stimulators of erythropoietin secretion in vivo.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/ml100198yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4007848PMC
December 2010

Novel antibiotics: C-2 symmetrical macrocycles inhibiting Holliday junction DNA binding by E. coli RuvC.

Bioorg Med Chem 2006 Jul 11;14(14):4731-9. Epub 2006 Apr 11.

Department of Chemistry and Biochemisty, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030, USA.

Holliday junctions (HJs) are formed as transient DNA intermediates during site-specific and homologous recombination. Both of these genetic exchange pathways are critical for normal DNA metabolism and repair. Trapping HJs leads to bacterial cell death by preventing proper segregation of the resulting interlinked chromosomes. Macrocyclic peptides designed to target this intermediate were synthesized with the goal of identifying compounds with specificity for this unique molecular target. We discovered ten macrocycles, both hexameric and octameric peptides, capable of trapping HJs in vitro. Those macrocycles containing tyrosine residues proved most effective. These data demonstrate that C-2 symmetrical macrocycles offer excellent synthetic targets for the development of novel antibiotic agents. Furthermore, the active compounds identified provide valuable tools for probing different pathways of recombinational exchange.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2006.03.028DOI Listing
July 2006
-->