Publications by authors named "Liqiao Huang"

5 Publications

  • Page 1 of 1

Niujiaodihuang Detoxify Decoction inhibits ferroptosis by enhancing glutathione synthesis in acute liver failure models.

J Ethnopharmacol 2021 Jun 12;279:114305. Epub 2021 Jun 12.

School of Pharmacy, Guangdong Medical University, Dongguan, 524023, China. Electronic address:

Ethnopharmacological Relevance: Niujiaodihuang Detoxify Decoction (NDD) is an integrated traditional Chinese medicine prescription that has been used as a therapeutic agent for the treatment of acute liver failure (ALF). However, the mechanisms underlying its action remain unclear.

Aim Of The Study: To determine the protective effect of NDD on D-galactosamine/lipopolysaccharide (D-GalN/LPS)-induced ALF and explore the underlying mechanisms.

Materials And Methods: We characterized the NDD fingerprint by HPLC and established D-GalN/LPS-induced ALF models in Sprague-Dawley rats and LO2 cells. Next, we measured the protective and antiferroptotic effects of NDD in vivo and in vitro. To further investigate the molecular mechanisms underlying the effects of NDD, we performed metabolomic analysis of the liver tissue using LC-MS/MS.

Results: Results of serum biochemical analysis, liver histopathology, and cell viability showed that NDD effectively relieved the liver injury. It reduced the accumulation of labile iron and alleviated lipid peroxidation by enhancing GPX4 activity. The mitochondrial morphology indicated that NDD exerted its hepatoprotective effect through an antiferroptotic activity. Metabolomic analysis showed that NDD treatment increased the levels of cysteine, decreased those of glutamate, and ameliorated the D-GalN/LPS-induced reduction in the levels of glutathione (GSH). The results for intracellular levels of reduced (GSH) and oxidized (GSSG) glutathione were consistent with those of metabolomic analysis.

Conclusion: Our findings indicate that NDD exerts hepatoprotective activity by evoking the reprogramming of GSH metabolism, and thereby, inhibiting ferroptosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2021.114305DOI Listing
June 2021

Carbon footprint of oil products pipeline transportation.

Sci Total Environ 2021 Aug 5;783:146906. Epub 2021 Apr 5.

Center for Spatial Information Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8568, Japan.

As climate issues gradually attract public attention worldwide, the operation and construction of oil product pipelines have been attached with new energy-saving and emission-reduction targets. Though previous studies concerning Life Cycle Assessment of oil and gas pipelines have estimated the carbon footprint to some extent, there is a lack of researches that take the characteristics of oil products pipelines into consideration. Oil products pipelines undertake the task of delivering various products to downstream demand locations, which differs greatly from other pipeline transportation systems as back-to-back sequential delivery is adopted. In this paper, a detailed Life Cycle Assessment model is established to analyze carbon emissions of oil products pipeline system from construction to disposal as well as its impact on soil environment. Data from practical pipes is adopted as the case study to reflect emissions produced in different stages, and the amount of total and unified emissions of different pipes provided through the proposed model is within the range of 2.78 to 4.70 tCOe/t·km. Then, sensitivity analysis is carried out to identify the driving factors of emissions. According to the calculation results, pipe length, diameter and throughput turn out to be the dominating factors, and an empirical formula is derived for future planned pipes. Relevant recommendations are put forward based on the results to help reduce emissions from oil product pipe transportation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.146906DOI Listing
August 2021

Prediction-based analysis on power consumption gap under long-term emergency: A case in China under COVID-19.

Appl Energy 2021 Feb 9;283:116339. Epub 2020 Dec 9.

Institute for Future Initiatives, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.

With the coronavirus pandemic wreathing havoc around the world, power industry has been hit hard due to the proposal of lockdown policies. However, the impact of lockdowns and shutdowns on the power system in different regions as well as periods of the pandemic can hardly be reflected on the foundation of current studies. In this paper, a prediction-based analysis method is developed to point out the electricity consumption gap resulted from the pandemic situation. The core of this method is a novel optimized grey prediction model, namely Rolling IMSGM(1,1) (Rolling Mechanism combined with grey model with initial condition as Maclaurin series), which achieves better prediction results in the face of long-term emergencies. A novel initial condition is adopted to track data with various characteristics in the form of higher-order polynomials, which are then determined by intelligent algorithms to realize accurate fitting. Historical power consumption data in China are utilized to carry out the monthly forecasts during COVID-19. Compared with other competitive models' prediction results, the superiority of IMSGM(1,1) are demonstrated. Through analyzing the gap between predicted consumption values and the actual data, it can be found that the impact of the pandemic on electricity varies in different periods, which is related to its severity and the local lockdown policies. This study helps to understand the impact on power industry in the face of such an emergency intuitively so as to respond to possible future events.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.apenergy.2020.116339DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7969145PMC
February 2021

Simultaneous phenol removal, nitrification and denitrification using microbial fuel cell technology.

Water Res 2015 Jun 11;76:160-70. Epub 2015 Mar 11.

School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China.

Here we show that concomitant removal of phenol and nitrogen can be accomplished in a single dual-chamber microbial fuel cell (MFC) reactor, in which the two chambers are separated with an anion-exchange membrane. A series of experiments were performed with ammonium (230 NH4(+)-N mg L(-1)) and phenol (with concentrations varying from 0 to 1400 mg L(-1)) fed to the aerobic cathode chamber of the MFC. Experimental results demonstrated that no apparent inhibitory effect of phenol on the nitrifying reaction was noted even at the phenol concentration up to 600 mg L(-1). For all the experiments, simultaneous nitrification and denitrification was achieved in the MFC. In comparison to the traditional aerobic bioreactor (ABR) and the same MFC run under the open-circuit condition, the MFC reactor allowed less inhibition of nitrification to phenol exposure and higher rate of nitrogen removal. The data of bacterial analysis revealed that electrochemically active bacteria and denitrifiers in the anaerobic chamber play a significant role in electricity generation and anaerobic denitrification, respectively, while phenol-degrading bacteria, nitrifiers, and denitrifiers in the aerobic cathode chamber are responsible for phenol oxidation, aerobic nitrification and aerobic denitrification, respectively. These results imply that the MFC holds potential for simultaneous removal of phenolic compounds and nitrogen contained in some particular industrial wastewaters.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2015.03.001DOI Listing
June 2015

Anode-biofilm electron transfer behavior and wastewater treatment under different operational modes of bioelectrochemical system.

Bioresour Technol 2014 Apr 6;157:305-9. Epub 2014 Feb 6.

The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, College of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China. Electronic address:

Anode-biofilm electron transfer behavior was investigated during the advanced wastewater treatment process by three bioelectrochemical systems (BESs): microbial fuel cell (MFC), MFC operated under short circuit condition (MSC), and microbial electrolysis cell (MEC). Under different operational modes, current produced by the anode biofilm varied from 0.92, 4.15 to 8.21mA in the sequence of MFC, MSC and MEC, respectively. The cyclic voltammetry test on the anode biofilm suggested that the current generation was achieved via various bioelectroactive species with formal potentials at -0.473, -0.402 and -0.345V (vs. SCE). Gibbs free energy and charge transfer resistance data demonstrated that different amounts of available bioelectroactive species functioned in different BESs. The comparative investigation among MFC, MSC and MEC suggested that MEC was the only feasible operational mode for advanced wastewater treatment, because of its superior current generation capability.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2014.01.088DOI Listing
April 2014