Publications by authors named "Linda Ebermann"

11 Publications

  • Page 1 of 1

Murine cytomegalovirus (CMV) infection via the intranasal route offers a robust model of immunity upon mucosal CMV infection.

J Gen Virol 2016 Jan 10;97(1):185-195. Epub 2015 Nov 10.

German Center for Infection Research (DZIF), Braunschweig, Germany.

Cytomegalovirus (CMV) is a ubiquitous virus, causing the most common congenital infection in humans, yet a vaccine against this virus is not available. Experimental studies of immunity against CMV in animal models of infection, such as the infection of mice with mouse CMV (MCMV), have relied mainly on parenteral infection protocols, although the virus naturally transmits by mucosal routes via body fluids. To characterize the biology of infections by mucosal routes, we compared the kinetics of virus replication, latent viral load and CD8 T-cell responses in lymphoid organs upon experimental intranasal (targeting the respiratory tract) and intragastric (targeting the digestive tract) infection with systemic intraperitoneal infection of two unrelated mouse strains. We observed that intranasal infection induced robust and long-term virus replication in the lungs and salivary glands but limited replication in the spleen. CD8 T-cell responses were somewhat weaker than upon intraperitoneal infection but showed similar kinetic profiles and phenotypes of antigen-specific cells. In contrast, intragastric infection resulted in abortive or poor virus replication in all tested organs and poor T-cell responses to the virus, especially at late times after infection. Consistent with the T-cell kinetics, the MCMV latent load was high in the lungs but low in the spleen of intranasally infected mice and lowest in all tested organs upon intragastric infection. In conclusion, we showed that intranasal but not intragastric infection of mice with MCMV represents a robust model to study the short- and long-term biology of CMV infection by a mucosal route.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1099/jgv.0.000339DOI Listing
January 2016

Adenine nucleotide translocase 1 expression affects enterovirus infection in human and murine hearts.

Int J Cardiol 2014 Apr 21;172(3):e449-52. Epub 2014 Jan 21.

Department of Cardiology & Pneumonology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany. Electronic address:

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijcard.2013.12.315DOI Listing
April 2014

Block of death-receptor apoptosis protects mouse cytomegalovirus from macrophages and is a determinant of virulence in immunodeficient hosts.

PLoS Pathog 2012 13;8(12):e1003062. Epub 2012 Dec 13.

Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany.

The inhibition of death-receptor apoptosis is a conserved viral function. The murine cytomegalovirus (MCMV) gene M36 is a sequence and functional homologue of the human cytomegalovirus gene UL36, and it encodes an inhibitor of apoptosis that binds to caspase-8, blocks downstream signaling and thus contributes to viral fitness in macrophages and in vivo. Here we show a direct link between the inability of mutants lacking the M36 gene (ΔM36) to inhibit apoptosis, poor viral growth in macrophage cell cultures and viral in vivo fitness and virulence. ΔM36 grew poorly in RAG1 knockout mice and in RAG/IL-2-receptor common gamma chain double knockout mice (RAGγC(-/-)), but the depletion of macrophages in either mouse strain rescued the growth of ΔM36 to almost wild-type levels. This was consistent with the observation that activated macrophages were sufficient to impair ΔM36 growth in vitro. Namely, spiking fibroblast cell cultures with activated macrophages had a suppressive effect on ΔM36 growth, which could be reverted by z-VAD-fmk, a chemical apoptosis inhibitor. TNFα from activated macrophages synergized with IFNγ in target cells to inhibit ΔM36 growth. Hence, our data show that poor ΔM36 growth in macrophages does not reflect a defect in tropism, but rather a defect in the suppression of antiviral mediators secreted by macrophages. To the best of our knowledge, this shows for the first time an immune evasion mechanism that protects MCMV selectively from the antiviral activity of macrophages, and thus critically contributes to viral pathogenicity in the immunocompromised host devoid of the adaptive immune system.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.ppat.1003062DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3521658PMC
May 2013

The mitochondrial respiratory chain has a critical role in the antiviral process in Coxsackievirus B3-induced myocarditis.

Lab Invest 2012 Jan 3;92(1):125-34. Epub 2011 Oct 3.

Department of Cardiology and Pneumonology, Charité-Campus Benjamin Franklin, Universitätsmedizin Berlin, Berlin, Germany.

Well-established differences in Coxsackievirus B3 (CVB3) elimination in resistant C57BL/6 and permissive A.SW/SnJ mice provide suitable models for studying the significance of the link between mitochondrial respiratory chain (RC), antioxidative stress components and mitochondrion-related apoptosis in the context of myocardial virus elimination. Distinct myocardial CVB3 titer in C57BL/6 (2.5 ± 1.4 × 10(4) plaque-forming units (p.f.u.)/g tissue) and A.SW/SnJ mice (1.4 ± 0.8 × 10(7) p.f.u./g) were associated with differences in the cardiac mitochondrial function 8 days post infection (p.i.). Infected C57BL/6 mouse hearts disclosed increased complex I (CI) and CIII activity, but restricted CII and normal CIV activity of RC. Reduced expression of the antioxidative catalase was accompanied by elevated lipid peroxidation (LPO), indicating oxidative stress. Intrinsic apoptosis was activated demonstrated by elevated levels of Bax, Bcl-2, caspase 3 and DNA degradation. In contrast, all myocardial RC complex activities were restricted in CVB3-infected A.SW/SnJ mice. The antioxidative system provided sufficient protection against oxidative stress shown by an elevated catalase expression and unaltered LPO. Bax and Bcl-2 levels were unchanged in CVB3-infected A.SW/SnJ mice, while caspase 3 was moderately increased but no DNA degradation was detectable. Correlation analyses including data from the two mouse strains revealed that reduced CVB3 titer correlated with increased CI and CIII activity, oxidative stress as well as active apoptosis during acute myocarditis (MC). C57BL/6 mice completely eliminated CVB3 and inflammation and normalized all intracellular parameters, while A.SW/SnJ mice showed permanently restricted CI activity in chronic MC 90 days p.i., at which time the replicating virus was no longer detectable but immunological processes were still active. Consequently, the regulation of energy metabolism appears crucial for an effective virus elimination and may be of prognostic and therapeutic significance for patients with virus-induced MC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/labinvest.2011.145DOI Listing
January 2012

Transgenic overexpression of heart-specific adenine nucleotide translocase 1 positively affects contractile function in cardiomyocytes.

Cell Physiol Biochem 2011 11;27(2):121-8. Epub 2011 Feb 11.

Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany.

Background/aims: The adenine nucleotide translocase (ANT) exchanges ATP and ADP over the inner mitochondrial membrane, supplying the cells with energy. Interestingly, myocardial ANT1 overexpression preserves cardiac structure and function under pathophysiological conditions. To ascertain whether the contractile system is directly affected by increased ANT1 expression, we analyzed cell morphology, contraction and relaxation parameters of ANT1 transgenic (ANT1-TG) cardiomyocytes, myofibrillar protein expression, and Ca(2+) handling in ANT1-TG rat hearts.

Results: ANT1-TG cardiomyoycytes displayed an elevation in cell volume (52.6 ± 12.0%; p<0.0001) in comparison to wildtype (WT) cells. Concurrently, contractile function in ANT1-TG cells was significantly increased, measured by a decline in time to peak contraction (TTP) and RT50, the time from peak contraction to 50% relaxation, during stimulation with 0.5, 1, and 2 Hz. Quantification of myofibrillar proteins exhibited a marked increase in total cardiac myosin heavy chain (51.8 ± 12.8%) (p<0.03), beta myosin heavy chain (22.9 ± 5.0%; p<0.03), actin (23.8 ± 8.8%; p<0.05), and troponin I (51.5 ± 13.7%; p<0.01). Regarding intracellular Ca(2+) handling, ANT1-TGs revealed a significant elevation in sarcoplasmic reticulum (SR) Ca(2+) ATPase (SERCA2a) protein level (22.2 ± 4.7%; p<0.01) associated with increased Ca(2+) uptake into the SR (34%; p<0.01). Moreover, the plasmalemmal Ca(2+) ATPase (PMCA) indicated advanced protein expression (23.8 ± 4.8%; p<0.01), whereas the protein amount of the Na(+)/Ca(2+) exchanger was not altered in ANT1 overexpressing hearts.

Conclusion: These data reveal a close association of elevated mitochondrial ATP/ADP transportation via ANT1 with increased contractile function. Furthermore, the ANT1-TGs exhibit an elevation in SR Ca(2+) transport that contributes to increased cardiac work, which may protect the heart under pathophysiological conditions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1159/000325214DOI Listing
May 2011

Pelota interacts with HAX1, EIF3G and SRPX and the resulting protein complexes are associated with the actin cytoskeleton.

BMC Cell Biol 2010 Apr 20;11:28. Epub 2010 Apr 20.

Institute of Human Genetics, Georg-August-University, Göttingen, Germany.

Background: Pelota (PELO) is an evolutionary conserved protein, which has been reported to be involved in the regulation of cell proliferation and stem cell self-renewal. Recent studies revealed the essential role of PELO in the No-Go mRNA decay, by which mRNA with translational stall are endonucleotically cleaved and degraded. Further, PELO-deficient mice die early during gastrulation due to defects in cell proliferation and/or differentiation.

Results: We show here that PELO is associated with actin microfilaments of mammalian cells. Overexpression of human PELO in Hep2G cells had prominent effect on cell growth, cytoskeleton organization and cell spreading. To find proteins interacting with PELO, full-length human PELO cDNA was used as a bait in a yeast two-hybrid screening assay. Partial sequences of HAX1, EIF3G and SRPX protein were identified as PELO-interacting partners from the screening. The interactions between PELO and HAX1, EIF3G and SRPX were confirmed in vitro by GST pull-down assays and in vivo by co-immunoprecipitation. Furthermore, the PELO interaction domain was mapped to residues 268-385 containing the c-terminal and acidic tail domain. By bimolecular fluorescence complementation assay (BiFC), we found that protein complexes resulting from the interactions between PELO and either HAX1, EIF3G or SRPX were mainly localized to cytoskeletal filaments.

Conclusion: We could show that PELO is subcellularly localized at the actin cytoskeleton, interacts with HAX1, EIF3G and SRPX proteins and that this interaction occurs at the cytoskeleton. Binding of PELO to cytoskeleton-associated proteins may facilitate PELO to detect and degrade aberrant mRNAs, at which the ribosome is stalled during translation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1471-2121-11-28DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2867792PMC
April 2010

Plasma ACE2 activity is an independent prognostic marker in Chagas' disease and equally potent as BNP.

J Card Fail 2010 Feb 4;16(2):157-63. Epub 2009 Nov 4.

Centre for Biomedical Research, Hull York Medical School, University of Hull, Hull, UK.

Background: Angiotensin-converting enzyme (ACE) 2 is a novel homologue of ACE. It metabolizes angiotensin (Ang)II to Ang-(1-7). This study aims to investigate the diagnostic and prognostic potency of circulating ACE2 activity in patients with heart failure (HF) from Chagas' disease (CD).

Methods And Results: Blood samples were obtained from 111 CD patients and 40 age- and gender-matched healthy subjects. The CD patients were further subdivided according to their New York Heart Association classification. ACE2 activity was significantly increased in CD patients with HF, but not in patients without systolic dysfunction. Moreover, plasma ACE2 activity was significantly correlated with their clinical severity and echocardiographic parameters. Importantly, the potency of circulating ACE2 activity in CD patients was equally potent as that of B-type natriuretic peptide to predict cardiac death and heart transplant. Most importantly, patients with both parameters elevated were on a 5-fold higher risk to reach an endpoint than patients with increase in only 1 of the 2 parameters.

Conclusions: Determination of ACE2 activity may provide a new and important diagnostic and prognostic marker for patients with CD. ACE2 activity and BNP concentration have additive predictive value and may be used in combination to offer a new dimension of prediction in HF.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cardfail.2009.09.005DOI Listing
February 2010

Impact of myocardial inflammation on cytosolic and mitochondrial creatine kinase activity and expression.

Basic Res Cardiol 2009 May 3;104(3):247-57. Epub 2009 Feb 3.

Centrum 11, Cardiology, Charité, University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany.

The disturbance of myocardial energy metabolism has been discussed as contributing to the progression of heart failure. Little however is known about the cardiac mitochondrial/cytosolic energy transfer in murine and human inflammatory heart disease. We examined the myocardial creatine kinase (CK) system, which connects mitochondrial ATP-producing and cytosolic ATP-consuming processes and is thus of central importance to the cellular energy homeostasis. The time course of expression and enzymatic activity of mitochondrial (mtCK) and cytosolic CK (cytCK) was investigated in Coxsackievirus B3 (CVB3)-infected SWR mice, which are susceptible to the development of chronic myocarditis. In addition, cytCK activity and isoform expression were analyzed in biopsies from patients with chronic inflammatory heart disease (n = 22). Cardiac CVB3 titer in CVB3-infected mice reached its maximum at 4 days post-infection (pi) and became undetectable at 28 days pi; cardiac inflammation cumulated 14 days pi but persisted through the 28-day survey. MtCK enzymatic activity was reduced by 40% without a concurrent decrease in mtCK protein during early and acute MC. Impaired mtCK activity was correlated with virus replication and increased level of interleukine 1beta (IL-1beta), tumor necrosis factor alpha (TNFalpha), and elevated catalase expression, a marker for intracellular oxidative stress. A reduction in cytCK activity of 48% was observed at day 14 pi and persisted to day 28 pi. This restriction was caused by a decrease in cytCK subunit expression but also by direct inhibition of specific cytCK activity. CytCK activity and expression were also reduced in myocardial biopsies from enterovirus genome-negative patients with inflammatory heart disease. The decrease in cytCK activity correlated with the number of infiltrating macrophages. Thus, viral infection and myocardial inflammation significantly influence the myocardial CK system via restriction of specific CK activity and down-regulation of cytCK protein. These changes may contribute to the progression of chronic inflammatory heart disease and malfunction of the heart.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00395-008-0773-5DOI Listing
May 2009

Myocardial overexpression of adenine nucleotide translocase 1 ameliorates diabetic cardiomyopathy in mice.

Exp Physiol 2009 Feb 22;94(2):220-7. Epub 2008 Oct 22.

Department of Cardiology, Charité-Universitätsmedizin Berlin, Germany.

Mitochondrial dysfunction is implicated in the pathogenesis of diabetic cardiomyopathy, a common complication of diabetes. Adenosine nucleotide translocase (ANT) translocates ADP/ATP across the inner mitochondrial membrane. Our study aimed to test the hypothesis that overexpression of ANT1 in cardiomyocytes has cardioprotective effects in diabetic cardiomyopathy induced by streptozotocin (STZ). Mice specifically overexpressing murine ANT1 in the heart were generated using alpha-myosin heavy chain promoter. Expression of ANT1 mRNA and protein in hearts was characterized by real-time polymerase chain reaction and Western blot analysis. Five- to 6-month-old male transgenic mice and their age-matched wild-type littermates were subjected to type 1 diabetes induced by STZ. Six weeks later, haemodynamic measurement was performed to assess cardiac function. Ventricular mRNA expression of atrial natriuretic peptide, a molecular marker of heart failure, was characterized by RNase-protection assay. Both ANT1 mRNA and ANT1 protein were specifically overexpressed in the heart of transgenic mice. Heart weight was decreased and cardiac function was dramatically impaired in wild-type mice 6 weeks after induction of diabetes, but ANT1 overexpression prevented these significant changes. The mRNA expression level of atrial natriuretic peptide confirmed the haemodynamic findings, being upregulated in wild-type mice receiving STZ, but showing no statistical differences in ANT1 transgenic mice. Cardiomyocyte-restricted overexpression of ANT1 prevents the development of diabetic cardiomyopathy; therefore, accelerated ADP/ATP exchange could be a new promising target to treat diabetic cardiomyopathy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1113/expphysiol.2008.044800DOI Listing
February 2009

The angiotensin-(1-7) receptor agonist AVE0991 is cardioprotective in diabetic rats.

Eur J Pharmacol 2008 Aug 24;590(1-3):276-80. Epub 2008 May 24.

Department of Cardiology, Charité, Campus Benjamin Franklin, Berlin, Germany.

Angiotensin-(1-7) is associated with beneficial effects in cardiovascular diseases. In this study, we determined the effect of AVE0991, a nonpeptide angiotensin-(1-7) receptor agonist, on cardiac function in an animal model of diabetes mellitus type I. Diabetes was induced in Sprague-Dawley rats by a single injection of streptozotocin (70 mg/kg). Diabetic and non-diabetic animals were fed with AVE0991 (20 mg/kg per day) or control chow. Normoglycemic control chow- or AVE0991-fed rats served as controls (n=10/group). After five weeks, metabolic cage experiments were performed to assess metabolic parameters. Six weeks after induction of diabetes, cardiac function was monitored using a Millar-tip catheter system. AVE0991 had no effect on any of the investigated hemodynamic parameters under normoglycemic conditions. Hyperglycemia was comparable in diabetic animals with or without AVE0991 treatment. Diabetic control rats suffered from severe systolic dysfunction, indicated by a significant decrease in heart rate, left ventricular systolic pressure, systolic blood pressure and an impairment of left ventricular contractility. Administration of AVE0991 clearly rescued cardiac function under diabetic conditions as indicated by a normalisation of blood pressure and contractility parameters. Our data demonstrates a dominant beneficial impact of AVE0991 on the diabetic heart, implying a cardioprotective role for angiotensin-(1-7) under hyperglycemic conditions and thus pointing to new therapeutic strategies using angiotensin-(1-7) agonists to treat cardiovascular complications in diabetes mellitus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2008.05.024DOI Listing
August 2008

Accelerated mitochondrial adenosine diphosphate/adenosine triphosphate transport improves hypertension-induced heart disease.

Circulation 2007 Jan 8;115(3):333-44. Epub 2007 Jan 8.

Charité-Universitätsmedizin, Campus Benjamin Franklin, Department of Cardiology and Pneumonology, Hindenburgdamm 30, 12200 Berlin, Germany.

Background: Strong evidence suggests that mitochondrial malfunction, which leads to disturbed energy metabolism and stimulated apoptosis, is a linchpin in the induction and manifestation of cardiac failure. An adequate exchange of ATP and ADP over the inner mitochondrial membrane by the adenine nucleotide translocase (ANT) is thereby essential to guarantee the cellular energy supply.

Methods And Results: To explore the effect of an ameliorated mitochondrial ATP/ADP transportation on cardiac dysfunction, we generated transgenic rats overexpressing ANT1 in the heart (ANT rats) and crossed them with renin-overexpressing rats (REN rats) suffering from hypertension-induced cardiac insufficiency. Cardiac-specific ANT1 overexpression resulted in a higher ATP/ADP transportation and elevated activities of respiratory chain complexes. Increased ANT activity in double-transgenic (ANT/REN) animals did not influence excessive hypertension seen in REN rats. Hypertension-induced cardiac hypertrophy in the REN rats was prevented by parallel ANT1 overexpression, however, and left ventricular function remarkably improved. The ANT1 overexpression led to a reduction in fibrosis and an improvement in cardiac tissue architecture. Consequently, the survival rate of ANT/REN rats was enhanced. Further investigations into the cardioprotective mechanism of ANT1 overexpression revealed improved mitochondrial structure and function and significantly reduced apoptosis in ANT/REN rats, shown by lowered cytosolic/mitochondrial cytochrome c ratio, reduced caspase 3 level, and prevented DNA degradation.

Conclusions: Myocardial ANT1 overexpression protects against hypertension-induced cardiac pathology. Thus, the improvement in mitochondrial function may be a basic principle for new strategies in treating heart disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCULATIONAHA.106.643296DOI Listing
January 2007