Publications by authors named "Lilit Antonyan"

5 Publications

  • Page 1 of 1

Lesch-Nyhan disease causes impaired energy metabolism and reduced developmental potential in midbrain dopaminergic cells.

Stem Cell Reports 2021 Jul 1;16(7):1749-1762. Epub 2021 Jul 1.

Psychiatric Genetics Group, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University and Douglas Hospital Research Institute, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Montreal, QC H4H 1R3, Canada. Electronic address:

Mutations in HPRT1, a gene encoding a rate-limiting enzyme for purine salvage, cause Lesch-Nyhan disease which is characterized by self-injury and motor impairments. We leveraged stem cell and genetic engineering technologies to model the disease in isogenic and patient-derived forebrain and midbrain cell types. Dopaminergic progenitor cells deficient in HPRT showed decreased intensity of all developmental cell-fate markers measured. Metabolic analyses revealed significant loss of all purine derivatives, except hypoxanthine, and impaired glycolysis and oxidative phosphorylation. real-time glucose tracing demonstrated increased shunting to the pentose phosphate pathway for de novo purine synthesis at the expense of ATP production. Purine depletion in dopaminergic progenitor cells resulted in loss of RHEB, impairing mTORC1 activation. These data demonstrate dopaminergic-specific effects of purine salvage deficiency and unexpectedly reveal that dopaminergic progenitor cells are programmed to a high-energy state prior to higher energy demands of terminally differentiated cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.stemcr.2021.06.003DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8282463PMC
July 2021

Stimulation of L-type calcium channels increases tyrosine hydroxylase and dopamine in ventral midbrain cells induced from somatic cells.

Stem Cells Transl Med 2020 Jun 10;9(6):697-712. Epub 2020 Mar 10.

Psychiatric Genetics Group, McGill University, Montreal, Quebec, Canada.

Making high-quality dopamine (DA)-producing cells for basic biological or small molecule screening studies is critical for the development of novel therapeutics for disorders of the ventral midbrain. Currently, many ventral midbrain assays have low signal-to-noise ratio due to low levels of cellular DA and the rate-limiting enzyme of DA synthesis, tyrosine hydroxylase (TH), hampering discovery efforts. Using intensively characterized ventral midbrain cells derived from human skin, which demonstrate calcium pacemaking activity and classical electrophysiological properties, we show that an L-type calcium agonist can significantly increase TH protein levels and DA content and release. Live calcium imaging suggests that it is the immediate influx of calcium occurring simultaneously in all cells that drives this effect. Genome-wide expression profiling suggests that L-type calcium channel stimulation has a significant effect on specific genes related to DA synthesis and affects expression of L-type calcium receptor subunits from the CACNA1 and CACNA2D families. Together, our findings provide an advance in the ability to increase DA and TH levels to improve the accuracy of disease modeling and small molecule screening for disorders of the ventral midbrain, including Parkinson's disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/sctm.18-0180DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7214648PMC
June 2020

The ER protein TLC domain 3B2 and its enzymatic product lactosylceramide enhance chondrocyte maturation.

Connect Tissue Res 2021 03 28;62(2):176-182. Epub 2019 Aug 28.

Research Centre, Shriners Hospital for Children - Canada , Montreal (Quebec), Canada.

: We previously cloned Tlcd3b2 (Tram-Lag1-CLN8 domain 3B2, formerly Fam57b2) from bone fracture repair callus tissue of Cyp24a1 knockout mice and showed that it synthesizes lactosylceramide (LacCer) under allosteric control of the vitamin D metabolite, 24,25-dihydroxyvitamin D3 [24,25(OH)2D3]. Tlcd3b2 was mainly detected in chondrocytes and the 24,25(OH)2D3-TLCD3B2-LacCer signaling cascade was shown to be important for optimal bone fracture repair, suggesting a role for TLCD3B2 in chondrocyte differentiation or maturation. We report the subcellular localization of TLCD3B2 and its effect on chondrocyte differentiation. : Immunofluorescence detection of epitope-tagged mutants was used to assess localization. ATDC5 chondrogenic cells were transfected with Tlcd3b2 expression vectors to examine effects on chondrocyte differentiation. : TLCD3B2 localized to the endoplasmic reticulum, with both the N- and C-termini facing the cytosolic compartment. Chondrogenic ATDC5 cells stably overexpressing Tlcd3b2 showed elevated type 2 (Col2a1) and type 10 (Col10a1) collagen gene expression and increased proteoglycan synthesis, and the effect on Col2a1 was enhanced by treatment with 24,25(OH)2D3. LacCer treatment of ATDC5 cells potentiated Col10a1 expression. Our results show that TLCD3B2 is an ER protein and implicate its expression and enzymatic product in chondrocyte maturation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/03008207.2019.1657425DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7047581PMC
March 2021

Mutations in ACTL6B Cause Neurodevelopmental Deficits and Epilepsy and Lead to Loss of Dendrites in Human Neurons.

Am J Hum Genet 2019 05 25;104(5):815-834. Epub 2019 Apr 25.

Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK.

We identified individuals with variations in ACTL6B, a component of the chromatin remodeling machinery including the BAF complex. Ten individuals harbored bi-allelic mutations and presented with global developmental delay, epileptic encephalopathy, and spasticity, and ten individuals with de novo heterozygous mutations displayed intellectual disability, ambulation deficits, severe language impairment, hypotonia, Rett-like stereotypies, and minor facial dysmorphisms (wide mouth, diastema, bulbous nose). Nine of these ten unrelated individuals had the identical de novo c.1027G>A (p.Gly343Arg) mutation. Human-derived neurons were generated that recaptured ACTL6B expression patterns in development from progenitor cell to post-mitotic neuron, validating the use of this model. Engineered knock-out of ACTL6B in wild-type human neurons resulted in profound deficits in dendrite development, a result recapitulated in two individuals with different bi-allelic mutations, and reversed on clonal genetic repair or exogenous expression of ACTL6B. Whole-transcriptome analyses and whole-genomic profiling of the BAF complex in wild-type and bi-allelic mutant ACTL6B neural progenitor cells and neurons revealed increased genomic binding of the BAF complex in ACTL6B mutants, with corresponding transcriptional changes in several genes including TPPP and FSCN1, suggesting that altered regulation of some cytoskeletal genes contribute to altered dendrite development. Assessment of bi-alleic and heterozygous ACTL6B mutations on an ACTL6B knock-out human background demonstrated that bi-allelic mutations mimic engineered deletion deficits while heterozygous mutations do not, suggesting that the former are loss of function and the latter are gain of function. These results reveal a role for ACTL6B in neurodevelopment and implicate another component of chromatin remodeling machinery in brain disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2019.03.022DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6507050PMC
May 2019

Differentiation of Human Induced Pluripotent Stem Cells (iPSCs) into an Effective Model of Forebrain Neural Progenitor Cells and Mature Neurons.

Bio Protoc 2019 Mar 5;9(5):e3188. Epub 2019 Mar 5.

Psychiatric Genetics Group, McGill University and Douglas Hospital Research Institute, Department of Psychiatry, Verdun, Montreal, QC H4H 1R3, Canada.

Induced Pluripotent Stem Cells (iPSCs) are pluripotent stem cells that can be generated from somatic cells, and provide a way to model the development of neural tissues . One particularly interesting application of iPSCs is the development of neurons analogous to those found in the human forebrain. Forebrain neurons play a central role in cognition and sensory processing, and deficits in forebrain neuronal activity contributes to a host of conditions, including epilepsy, Alzheimer's disease, and schizophrenia. Here, we present our protocol for differentiating iPSCs into forebrain neural progenitor cells (NPCs) and neurons, whereby neural rosettes are generated from stem cells without dissociation and NPCs purified from rosettes based on their adhesion, resulting in a more rapid generation of pure NPC cultures. Neural progenitor cells can be maintained as long-term cultures, or differentiated into forebrain neurons. This protocol provides a simplified and fast methodology of generating forebrain NPCs and neurons, and enables researchers to generate effective models to study forebrain disease and neurodevelopment. This protocol can also be easily adapted to generate other neural lineages.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.21769/BioProtoc.3188DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7854068PMC
March 2019
-->