Publications by authors named "Lili Milani"

129 Publications

Genomic and phenotypic insights from an atlas of genetic effects on DNA methylation.

Nat Genet 2021 09 6;53(9):1311-1321. Epub 2021 Sep 6.

Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia.

Characterizing genetic influences on DNA methylation (DNAm) provides an opportunity to understand mechanisms underpinning gene regulation and disease. In the present study, we describe results of DNAm quantitative trait locus (mQTL) analyses on 32,851 participants, identifying genetic variants associated with DNAm at 420,509 DNAm sites in blood. We present a database of >270,000 independent mQTLs, of which 8.5% comprise long-range (trans) associations. Identified mQTL associations explain 15-17% of the additive genetic variance of DNAm. We show that the genetic architecture of DNAm levels is highly polygenic. Using shared genetic control between distal DNAm sites, we constructed networks, identifying 405 discrete genomic communities enriched for genomic annotations and complex traits. Shared genetic variants are associated with both DNAm levels and complex diseases, but only in a minority of cases do these associations reflect causal relationships from DNAm to trait or vice versa, indicating a more complex genotype-phenotype map than previously anticipated.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-021-00923-xDOI Listing
September 2021

Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression.

Nat Genet 2021 09 2;53(9):1300-1310. Epub 2021 Sep 2.

Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.

Trait-associated genetic variants affect complex phenotypes primarily via regulatory mechanisms on the transcriptome. To investigate the genetics of gene expression, we performed cis- and trans-expression quantitative trait locus (eQTL) analyses using blood-derived expression from 31,684 individuals through the eQTLGen Consortium. We detected cis-eQTL for 88% of genes, and these were replicable in numerous tissues. Distal trans-eQTL (detected for 37% of 10,317 trait-associated variants tested) showed lower replication rates, partially due to low replication power and confounding by cell type composition. However, replication analyses in single-cell RNA-seq data prioritized intracellular trans-eQTL. Trans-eQTL exerted their effects via several mechanisms, primarily through regulation by transcription factors. Expression of 13% of the genes correlated with polygenic scores for 1,263 phenotypes, pinpointing potential drivers for those traits. In summary, this work represents a large eQTL resource, and its results serve as a starting point for in-depth interpretation of complex phenotypes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-021-00913-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8432599PMC
September 2021

Genetic regulation of spermine oxidase activity and cancer risk: a Mendelian randomization study.

Sci Rep 2021 08 31;11(1):17463. Epub 2021 Aug 31.

Department of Epidemiology Research, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark.

Spermine oxidase (SMOX) catalyzes the oxidation of spermine to spermidine. Observational studies have reported SMOX as a source of reactive oxygen species associated with cancer, implying that inhibition of SMOX could be a target for chemoprevention. Here we test causality of SMOX levels with cancer risk using a Mendelian randomization analysis. We performed a GWAS of spermidine/spermine ratio to identify genetic variants associated with regulation of SMOX activity. Replication analysis was performed in two datasets of SMOX gene expression. We then did a Mendelian randomization analysis by testing the association between the SMOX genetic instrument and neuroblastoma, gastric, lung, breast, prostate, and colorectal cancers using GWAS summary statistics. GWAS of spermidine/spermine ratio identified SMOX locus (P = 1.34 × 10) explaining 32% of the variance. The lead SNP rs1741315 was also associated with SMOX gene expression in newborns (P = 8.48 × 10) and adults (P = 2.748 × 10) explaining 37% and 6% of the variance, respectively. Genetically determined SMOX activity was not associated with neuroblastoma, gastric, lung, breast, prostate nor colorectal cancer (P > 0.05). A PheWAS of rs1741315 did not reveal any relevant associations. Common genetic variation in the SMOX gene was strongly associated with SMOX activity in newborns, and less strongly in adults. Genetic down-regulation of SMOX was not significantly associated with lower odds of neuroblastoma, gastric, lung, breast, prostate and colorectal cancer. These results may inform studies of SMOX inhibition as a target for chemoprevention.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-021-97069-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8408253PMC
August 2021

Genetic insights into biological mechanisms governing human ovarian ageing.

Nature 2021 08 4;596(7872):393-397. Epub 2021 Aug 4.

Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.

Reproductive longevity is essential for fertility and influences healthy ageing in women, but insights into its underlying biological mechanisms and treatments to preserve it are limited. Here we identify 290 genetic determinants of ovarian ageing, assessed using normal variation in age at natural menopause (ANM) in about 200,000 women of European ancestry. These common alleles were associated with clinical extremes of ANM; women in the top 1% of genetic susceptibility have an equivalent risk of premature ovarian insufficiency to those carrying monogenic FMR1 premutations. The identified loci implicate a broad range of DNA damage response (DDR) processes and include loss-of-function variants in key DDR-associated genes. Integration with experimental models demonstrates that these DDR processes act across the life-course to shape the ovarian reserve and its rate of depletion. Furthermore, we demonstrate that experimental manipulation of DDR pathways highlighted by human genetics increases fertility and extends reproductive life in mice. Causal inference analyses using the identified genetic variants indicate that extending reproductive life in women improves bone health and reduces risk of type 2 diabetes, but increases the risk of hormone-sensitive cancers. These findings provide insight into the mechanisms that govern ovarian ageing, when they act, and how they might be targeted by therapeutic approaches to extend fertility and prevent disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-021-03779-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7611832PMC
August 2021

Genomic Insights into Myasthenia Gravis Identify Distinct Immunological Mechanisms in Early and Late Onset Disease.

Ann Neurol 2021 Sep 4;90(3):455-463. Epub 2021 Aug 4.

Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.

Objective: The purpose of this study was to identify disease relevant genes and explore underlying immunological mechanisms that contribute to early and late onset forms of myasthenia gravis.

Methods: We used a novel genomic methodology to integrate genomewide association study (GWAS) findings in myasthenia gravis with cell-type specific information, such as gene expression patterns and promotor-enhancer interactions, in order to identify disease-relevant genes. Subsequently, we conducted additional genomic investigations, including an expression quantitative analysis of 313 healthy people to provide mechanistic insights.

Results: We identified several genes that were specifically linked to early onset myasthenia gravis including TNIP1, ORMDL3, GSDMB, and TRAF3. We showed that regulators of toll-like receptor 4 signaling were enriched among these early onset disease genes (fold enrichment = 3.85, p = 6.4 × 10 ). In contrast, T-cell regulators CD28 and CTLA4 were exclusively linked to late onset disease. We identified 2 causal genetic variants (rs231770 and rs231735; posterior probability = 0.98 and 0.91) near the CTLA4 gene. Subsequently, we demonstrated that these causal variants result in low expression of CTLA4 (rho = -0.66, p = 1.28 × 10 and rho = -0.52, p = 7.01 × 10 , for rs231735 and rs231770, respectively).

Interpretation: The disease-relevant genes identified in this study are a unique resource for many disciplines, including clinicians, scientists, and the pharmaceutical industry. The distinct immunological pathways linked to early and late onset myasthenia gravis carry important implications for drug repurposing opportunities and for future studies of drug development. ANN NEUROL 2021;90:455-463.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ana.26169DOI Listing
September 2021

Genome-wide association studies identify 137 genetic loci for DNA methylation biomarkers of aging.

Genome Biol 2021 06 29;22(1):194. Epub 2021 Jun 29.

Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.

Background: Biological aging estimators derived from DNA methylation data are heritable and correlate with morbidity and mortality. Consequently, identification of genetic and environmental contributors to the variation in these measures in populations has become a major goal in the field.

Results: Leveraging DNA methylation and SNP data from more than 40,000 individuals, we identify 137 genome-wide significant loci, of which 113 are novel, from genome-wide association study (GWAS) meta-analyses of four epigenetic clocks and epigenetic surrogate markers for granulocyte proportions and plasminogen activator inhibitor 1 levels, respectively. We find evidence for shared genetic loci associated with the Horvath clock and expression of transcripts encoding genes linked to lipid metabolism and immune function. Notably, these loci are independent of those reported to regulate DNA methylation levels at constituent clock CpGs. A polygenic score for GrimAge acceleration showed strong associations with adiposity-related traits, educational attainment, parental longevity, and C-reactive protein levels.

Conclusion: This study illuminates the genetic architecture underlying epigenetic aging and its shared genetic contributions with lifestyle factors and longevity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13059-021-02398-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8243879PMC
June 2021

Resource profile and user guide of the Polygenic Index Repository.

Nat Hum Behav 2021 Jun 17. Epub 2021 Jun 17.

McCourt School of Public Policy, Georgetown University, Washington, DC, USA.

Polygenic indexes (PGIs) are DNA-based predictors. Their value for research in many scientific disciplines is growing rapidly. As a resource for researchers, we used a consistent methodology to construct PGIs for 47 phenotypes in 11 datasets. To maximize the PGIs' prediction accuracies, we constructed them using genome-wide association studies-some not previously published-from multiple data sources, including 23andMe and UK Biobank. We present a theoretical framework to help interpret analyses involving PGIs. A key insight is that a PGI can be understood as an unbiased but noisy measure of a latent variable we call the 'additive SNP factor'. Regressions in which the true regressor is this factor but the PGI is used as its proxy therefore suffer from errors-in-variables bias. We derive an estimator that corrects for the bias, illustrate the correction, and make a Python tool for implementing it publicly available.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41562-021-01119-3DOI Listing
June 2021

Sex-Dependent Shared and Nonshared Genetic Architecture Across Mood and Psychotic Disorders.

Biol Psychiatry 2021 Mar 23. Epub 2021 Mar 23.

Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois; Department of Psychiatry and Behavioral Sciences, North Shore University Health System, Evanston, Illinois.

Background: Sex differences in incidence and/or presentation of schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BIP) are pervasive. Previous evidence for shared genetic risk and sex differences in brain abnormalities across disorders suggest possible shared sex-dependent genetic risk.

Methods: We conducted the largest to date genome-wide genotype-by-sex (G×S) interaction of risk for these disorders using 85,735 cases (33,403 SCZ, 19,924 BIP, and 32,408 MDD) and 109,946 controls from the PGC (Psychiatric Genomics Consortium) and iPSYCH.

Results: Across disorders, genome-wide significant single nucleotide polymorphism-by-sex interaction was detected for a locus encompassing NKAIN2 (rs117780815, p = 3.2 × 10), which interacts with sodium/potassium-transporting ATPase (adenosine triphosphatase) enzymes, implicating neuronal excitability. Three additional loci showed evidence (p < 1 × 10) for cross-disorder G×S interaction (rs7302529, p = 1.6 × 10; rs73033497, p = 8.8 × 10; rs7914279, p = 6.4 × 10), implicating various functions. Gene-based analyses identified G×S interaction across disorders (p = 8.97 × 10) with transcriptional inhibitor SLTM. Most significant in SCZ was a MOCOS gene locus (rs11665282, p = 1.5 × 10), implicating vascular endothelial cells. Secondary analysis of the PGC-SCZ dataset detected an interaction (rs13265509, p = 1.1 × 10) in a locus containing IDO2, a kynurenine pathway enzyme with immunoregulatory functions implicated in SCZ, BIP, and MDD. Pathway enrichment analysis detected significant G×S interaction of genes regulating vascular endothelial growth factor receptor signaling in MDD (false discovery rate-corrected p < .05).

Conclusions: In the largest genome-wide G×S analysis of mood and psychotic disorders to date, there was substantial genetic overlap between the sexes. However, significant sex-dependent effects were enriched for genes related to neuronal development and immune and vascular functions across and within SCZ, BIP, and MDD at the variant, gene, and pathway levels.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopsych.2021.02.972DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8458480PMC
March 2021

Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology.

Nat Genet 2021 06 17;53(6):817-829. Epub 2021 May 17.

Department of Neuroscience, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.

Bipolar disorder is a heritable mental illness with complex etiology. We performed a genome-wide association study of 41,917 bipolar disorder cases and 371,549 controls of European ancestry, which identified 64 associated genomic loci. Bipolar disorder risk alleles were enriched in genes in synaptic signaling pathways and brain-expressed genes, particularly those with high specificity of expression in neurons of the prefrontal cortex and hippocampus. Significant signal enrichment was found in genes encoding targets of antipsychotics, calcium channel blockers, antiepileptics and anesthetics. Integrating expression quantitative trait locus data implicated 15 genes robustly linked to bipolar disorder via gene expression, encoding druggable targets such as HTR6, MCHR1, DCLK3 and FURIN. Analyses of bipolar disorder subtypes indicated high but imperfect genetic correlation between bipolar disorder type I and II and identified additional associated loci. Together, these results advance our understanding of the biological etiology of bipolar disorder, identify novel therapeutic leads and prioritize genes for functional follow-up studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-021-00857-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8192451PMC
June 2021

Hybrid modelling for stroke care: Review and suggestions of new approaches for risk assessment and simulation of scenarios.

Neuroimage Clin 2021 7;31:102694. Epub 2021 May 7.

Integrative Systems Biology, Department of Biomedical Engineering, Linköping University, 58185 Linköping, Sweden. Electronic address:

Stroke is an example of a complex and multi-factorial disease involving multiple organs, timescales, and disease mechanisms. To deal with this complexity, and to realize Precision Medicine of stroke, mathematical models are needed. Such approaches include: 1) machine learning, 2) bioinformatic network models, and 3) mechanistic models. Since these three approaches have complementary strengths and weaknesses, a hybrid modelling approach combining them would be the most beneficial. However, no concrete approach ready to be implemented for a specific disease has been presented to date. In this paper, we both review the strengths and weaknesses of the three approaches, and propose a roadmap for hybrid modelling in the case of stroke care. We focus on two main tasks needed for the clinical setting: a) For stroke risk calculation, we propose a new two-step approach, where non-linear mixed effects models and bioinformatic network models yield biomarkers which are used as input to a machine learning model and b) For simulation of care scenarios, we propose a new four-step approach, which revolves around iterations between simulations of the mechanistic models and imputations of non-modelled or non-measured variables. We illustrate and discuss the different approaches in the context of Precision Medicine for stroke.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nicl.2021.102694DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8141769PMC
September 2021

Stratification of Type 2 Diabetes by Age of Diagnosis in the UK Biobank Reveals Subgroup-Specific Genetic Associations and Causal Risk Profiles.

Diabetes 2021 08 10;70(8):1816-1825. Epub 2021 May 10.

Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands.

The pathogenesis of type 2 diabetes (T2D) might change with increasing age. Here, we used a stratification based on age of diagnosis to gain insight into the genetics and causal risk factors of T2D across different age-groups. We performed genome-wide association studies (GWAS) on T2D and T2D subgroups based on age of diagnosis (<50, 50-60, 60-70, and >70 years) (total of 24,986 cases). As control subjects, participants were at least 70 years of age at the end of follow-up without developing T2D ( =187,130). GWAS identified 208 independent lead single nucleotide polymorphism (SNPs) mapping to 69 loci associated with T2D ( < 1.0e-8). Among others, SNPs mapped to and multiple independent SNPs mapped to were more strongly associated with cases diagnosed after age 70 years than with cases diagnosed before age 50 years. Based on the different case groups, we performed two-sample Mendelian randomization. Most notably, we observed that of the investigated risk factors, the association between BMI and T2D attenuated with increasing age of diagnosis. Collectively, our results indicate that stratification of T2D based on age of diag-nosis reveals subgroup-specific genetics and causal determinants, supporting the hypothesis that the pathogenesis of T2D changes with increasing age.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2337/db20-0602DOI Listing
August 2021

Multi-ancestry genome-wide gene-sleep interactions identify novel loci for blood pressure.

Mol Psychiatry 2021 Apr 15. Epub 2021 Apr 15.

Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.

Long and short sleep duration are associated with elevated blood pressure (BP), possibly through effects on molecular pathways that influence neuroendocrine and vascular systems. To gain new insights into the genetic basis of sleep-related BP variation, we performed genome-wide gene by short or long sleep duration interaction analyses on four BP traits (systolic BP, diastolic BP, mean arterial pressure, and pulse pressure) across five ancestry groups in two stages using 2 degree of freedom (df) joint test followed by 1df test of interaction effects. Primary multi-ancestry analysis in 62,969 individuals in stage 1 identified three novel gene by sleep interactions that were replicated in an additional 59,296 individuals in stage 2 (stage 1 + 2 P < 5 × 10), including rs7955964 (FIGNL2/ANKRD33) that increases BP among long sleepers, and rs73493041 (SNORA26/C9orf170) and rs10406644 (KCTD15/LSM14A) that increase BP among short sleepers (P < 5 × 10). Secondary ancestry-specific analysis identified another novel gene by long sleep interaction at rs111887471 (TRPC3/KIAA1109) in individuals of African ancestry (P = 2 × 10). Combined stage 1 and 2 analyses additionally identified significant gene by long sleep interactions at 10 loci including MKLN1 and RGL3/ELAVL3 previously associated with BP, and significant gene by short sleep interactions at 10 loci including C2orf43 previously associated with BP (P < 10). 2df test also identified novel loci for BP after modeling sleep that has known functions in sleep-wake regulation, nervous and cardiometabolic systems. This study indicates that sleep and primary mechanisms regulating BP may interact to elevate BP level, suggesting novel insights into sleep-related BP regulation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41380-021-01087-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8517040PMC
April 2021

Genetic Predisposition to Coronary Artery Disease in Type 2 Diabetes Mellitus.

Circ Genom Precis Med 2020 12 13;13(6):e002769. Epub 2020 Aug 13.

The Usher Institute of Population Health Sciences & Informatics (A.D.M.), University of Edinburgh, Edinburgh, U.K.

Background: Coronary artery disease (CAD) is accelerated in subjects with type 2 diabetes mellitus (T2D).

Methods: To test whether this reflects differential genetic influences on CAD risk in subjects with T2D, we performed a systematic assessment of genetic overlap between CAD and T2D in 66 643 subjects (27 708 with CAD and 24 259 with T2D). Variants showing apparent association with CAD in stratified analyses or evidence of interaction were evaluated in a further 117 787 subjects (16 694 with CAD and 11 537 with T2D).

Results: None of the previously characterized CAD loci was found to have specific effects on CAD in T2D individuals, and a genome-wide interaction analysis found no new variants for CAD that could be considered T2D specific. When we considered the overall genetic correlations between CAD and its risk factors, we found no substantial differences in these relationships by T2D background.

Conclusions: This study found no evidence that the genetic architecture of CAD differs in those with T2D compared with those without T2D.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCGEN.119.002769DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7748049PMC
December 2020

An epigenome-wide association study of metabolic syndrome and its components.

Sci Rep 2020 11 25;10(1):20567. Epub 2020 Nov 25.

Genomics and Biobank Unit, Department of Public Health Solutions, National Institute for Health and Welfare, Biomedicum 1, Haartmaninkatu 8, 00290, Helsinki, Finland.

The role of metabolic syndrome (MetS) as a preceding metabolic state for type 2 diabetes and cardiovascular disease is widely recognised. To accumulate knowledge of the pathological mechanisms behind the condition at the methylation level, we conducted an epigenome-wide association study (EWAS) of MetS and its components, testing 1187 individuals of European ancestry for approximately 470 000 methylation sites throughout the genome. Methylation site cg19693031 in gene TXNIP -previously associated with type 2 diabetes, glucose and lipid metabolism, associated with fasting glucose level (P = 1.80 × 10). Cg06500161 in gene ABCG1 associated both with serum triglycerides (P = 5.36 × 10) and waist circumference (P = 5.21 × 10). The previously identified type 2 diabetes-associated locus cg08309687 in chromosome 21 associated with waist circumference for the first time (P = 2.24 × 10). Furthermore, a novel HDL association with cg17901584 in chromosome 1 was identified (P = 7.81 × 10). Our study supports previous genetic studies of MetS, finding that lipid metabolism plays a key role in pathology of the syndrome. We provide evidence regarding a close interplay with glucose metabolism. Finally, we suggest that in attempts to identify methylation loci linking separate MetS components, cg19693031 appears to represent a strong candidate.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-020-77506-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7688654PMC
November 2020

Longitudinal proteomic profiling reveals increased early inflammation and sustained apoptosis proteins in severe COVID-19.

Sci Rep 2020 11 25;10(1):20533. Epub 2020 Nov 25.

Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.

SARS-CoV-2 infection has a risk to develop into life-threatening COVID-19 disease. Whereas age, hypertension, and chronic inflammatory conditions are risk factors, underlying host factors and markers for disease severity, e.g. requiring intensive care unit (ICU) treatment, remain poorly defined. To this end, we longitudinally profiled blood inflammation markers, antibodies, and 101 plasma proteins of hospitalized COVID-19 patients who did or did not require ICU admission. While essentially all patients displayed SARS-CoV-2-specific antibodies and virus-neutralization capacity within 12-15 days, a rapid, mostly transient upregulation of selective inflammatory markers including IL-6, CXCL10, CXCL11, IFNγ, IL-10, and monocyte-attracting CCL2, CCL7 and CCL8, was particularly evident in ICU patients. In addition, there was consistent and sustained upregulation of apoptosis-associated proteins CASP8, TNFSF14, HGF, and TGFB1, with HGF discriminating between ICU and non-ICU cohorts. Thus, COVID-19 is associated with a selective inflammatory milieu within which the apoptotic pathway is a cardinal feature with potential to aid risk-based patient stratification.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-020-77525-wDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7689507PMC
November 2020

Genome-wide association study identifies 48 common genetic variants associated with handedness.

Nat Hum Behav 2021 01 28;5(1):59-70. Epub 2020 Sep 28.

Institute of Biological Psychiatry, Mental Health Services of Copenhagen, Copenhagen, Denmark.

Handedness has been extensively studied because of its relationship with language and the over-representation of left-handers in some neurodevelopmental disorders. Using data from the UK Biobank, 23andMe and the International Handedness Consortium, we conducted a genome-wide association meta-analysis of handedness (N = 1,766,671). We found 41 loci associated (P < 5 × 10) with left-handedness and 7 associated with ambidexterity. Tissue-enrichment analysis implicated the CNS in the aetiology of handedness. Pathways including regulation of microtubules and brain morphology were also highlighted. We found suggestive positive genetic correlations between left-handedness and neuropsychiatric traits, including schizophrenia and bipolar disorder. Furthermore, the genetic correlation between left-handedness and ambidexterity is low (r = 0.26), which implies that these traits are largely influenced by different genetic mechanisms. Our findings suggest that handedness is highly polygenic and that the genetic variants that predispose to left-handedness may underlie part of the association with some psychiatric disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41562-020-00956-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7116623PMC
January 2021

A data-driven medication score predicts 10-year mortality among aging adults.

Sci Rep 2020 09 25;10(1):15760. Epub 2020 Sep 25.

Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland.

Health differences among the elderly and the role of medical treatments are topical issues in aging societies. We demonstrate the use of modern statistical learning methods to develop a data-driven health measure based on 21 years of pharmacy purchase and mortality data of 12,047 aging individuals. The resulting score was validated with 33,616 individuals from two fully independent datasets and it is strongly associated with all-cause mortality (HR 1.18 per point increase in score; 95% CI 1.14-1.22; p = 2.25e-16). When combined with Charlson comorbidity index, individuals with elevated medication score and comorbidity index had over six times higher risk (HR 6.30; 95% CI 3.84-10.3; AUC = 0.802) compared to individuals with a protective score profile. Alone, the medication score performs similarly to the Charlson comorbidity index and is associated with polygenic risk for coronary heart disease and type 2 diabetes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-020-72045-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7519677PMC
September 2020

Genome-wide Study Identifies Association between HLA-B55:01 and Self-Reported Penicillin Allergy.

Am J Hum Genet 2020 10 3;107(4):612-621. Epub 2020 Sep 3.

Department of Epidemiology Research, Statens Serum Institut, Copenhagen 2300, Denmark; Department of Clinical Sciences, Lund University Diabetes Centre, 214 28 Malmö, Sweden; Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland.

Hypersensitivity reactions to drugs are often unpredictable and can be life threatening, underscoring a need for understanding their underlying mechanisms and risk factors. The extent to which germline genetic variation influences the risk of commonly reported drug allergies such as penicillin allergy remains largely unknown. We extracted data from the electronic health records of more than 600,000 participants from the UK, Estonian, and Vanderbilt University Medical Center's BioVU biobanks to study the role of genetic variation in the occurrence of self-reported penicillin hypersensitivity reactions. We used imputed SNP to HLA typing data from these cohorts to further fine map the human leukocyte antigen (HLA) association and replicated our results in 23andMe's research cohort involving a total of 1.12 million individuals. Genome-wide meta-analysis of penicillin allergy revealed two loci, including one located in the HLA region on chromosome 6. This signal was further fine-mapped to the HLA-B55:01 allele (OR 1.41 95% CI 1.33-1.49, p value 2.04 × 10) and confirmed by independent replication in 23andMe's research cohort (OR 1.30 95% CI 1.25-1.34, p value 1.00 × 10). The lead SNP was also associated with lower lymphocyte counts and in silico follow-up suggests a potential effect on T-lymphocytes at HLA-B55:01. We also observed a significant hit in PTPN22 and the GWAS results correlated with the genetics of rheumatoid arthritis and psoriasis. We present robust evidence for the role of an allele of the major histocompatibility complex (MHC) I gene HLA-B in the occurrence of penicillin allergy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2020.08.008DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7536643PMC
October 2020

Differences in local population history at the finest level: the case of the Estonian population.

Eur J Hum Genet 2020 11 25;28(11):1580-1591. Epub 2020 Jul 25.

Estonian Biocentre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia.

Several recent studies detected fine-scale genetic structure in human populations. Hence, groups conventionally treated as single populations harbour significant variation in terms of allele frequencies and patterns of haplotype sharing. It has been shown that these findings should be considered when performing studies of genetic associations and natural selection, especially when dealing with polygenic phenotypes. However, there is little understanding of the practical effects of such genetic structure on demography reconstructions and selection scans when focusing on recent population history. Here we tested the impact of population structure on such inferences using high-coverage (~30×) genome sequences of 2305 Estonians. We show that different regions of Estonia differ in both effective population size dynamics and signatures of natural selection. By analyzing identity-by-descent segments we also reveal that some Estonian regions exhibit evidence of a bottleneck 10-15 generations ago reflecting sequential episodes of wars, plague and famine, although this signal is virtually undetected when treating Estonia as a single population. Besides that, we provide a framework for relating effective population size estimated from genetic data to actual census size and validate it on the Estonian population. This approach may be widely used both to cross-check estimates based on historical sources as well as to get insight into times and/or regions with no other information available. Our results suggest that the history of human populations within the last few millennia can be highly region specific and cannot be properly studied without taking local genetic structure into account.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41431-020-0699-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7575549PMC
November 2020

Evaluating the cardiovascular safety of sclerostin inhibition using evidence from meta-analysis of clinical trials and human genetics.

Sci Transl Med 2020 06;12(549)

Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7FZ, UK.

Inhibition of sclerostin is a therapeutic approach to lowering fracture risk in patients with osteoporosis. However, data from phase 3 randomized controlled trials (RCTs) of romosozumab, a first-in-class monoclonal antibody that inhibits sclerostin, suggest an imbalance of serious cardiovascular events, and regulatory agencies have issued marketing authorizations with warnings of cardiovascular disease. Here, we meta-analyze published and unpublished cardiovascular outcome trial data of romosozumab and investigate whether genetic variants that mimic therapeutic inhibition of sclerostin are associated with higher risk of cardiovascular disease. Meta-analysis of up to three RCTs indicated a probable higher risk of cardiovascular events with romosozumab. Scaled to the equivalent dose of romosozumab (210 milligrams per month; 0.09 grams per square centimeter of higher bone mineral density), the genetic variants were associated with lower risk of fracture and osteoporosis (commensurate with the therapeutic effect of romosozumab) and with a higher risk of myocardial infarction and/or coronary revascularization and major adverse cardiovascular events. The same variants were also associated with increased risk of type 2 diabetes mellitus and higher systolic blood pressure and central adiposity. Together, our findings indicate that inhibition of sclerostin may elevate cardiovascular risk, warranting a rigorous evaluation of the cardiovascular safety of romosozumab and other sclerostin inhibitors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/scitranslmed.aay6570DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7116615PMC
June 2020

Global Frequencies of Clinically Important HLA Alleles and Their Implications For the Cost-Effectiveness of Preemptive Pharmacogenetic Testing.

Clin Pharmacol Ther 2021 01 26;109(1):160-174. Epub 2020 Jul 26.

Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.

Immune-mediated drug hypersensitivity reactions are an important source of iatrogenic morbidity and mortality. Human leukocyte antigen (HLA)-B*57:01, HLA-B*15:02, HLA-A*31:01, and HLA-B*58:01 constitute established risk factors and preemptive genotyping of these HLA alleles in patients prior to the initiation of abacavir, carbamazepine, and allopurinol-based therapies can prevent toxicity and improve patient outcomes. However, the cost-effectiveness of preemptive HLA testing has only been evaluated in the United States and few countries in Europe and Asia. In this study, we consolidated HLA genotypes from 3.5-6.4 million individuals across up to 74 countries and modeled the country-specific cost-effectiveness of genetic testing. We find major ethnogeographic differences in risk allele prevalence, which translated into pronounced differences in the number of patients needed to test to prevent one case of severe hypersensitivity reactions between countries and populations. At incremental cost-effectiveness ratio thresholds of $40,000, testing of HLA-B*57:01 in patients initiating abacavir was cost-effective in the majority of countries with potential exceptions of East Asia, Saudi Arabia, Ghana, and Zimbabwe. For carbamazepine, preemptive genotyping of HLA-B*15:02 is only cost-effective across most of East and South Asia, whereas HLA-A*31:01 testing is likely to be cost-effective globally. Testing of HLA-B*58:01 is more likely to be cost-effective throughout Africa and Asia compared with Europe and the Americas. We anticipate that this data set can serve as an important resource for clinicians and health economists to guide clinical decision making and inform public healthcare strategies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/cpt.1944DOI Listing
January 2021

Identification, Heritability, and Relation With Gene Expression of Novel DNA Methylation Loci for Blood Pressure.

Hypertension 2020 07 10;76(1):195-205. Epub 2020 Jun 10.

Department of Endocrinology (B.H.R.W., J.V.v.V.-O.), University Medical Center Groningen, University of Groningen, The Netherlands.

We conducted an epigenome-wide association study meta-analysis on blood pressure (BP) in 4820 individuals of European and African ancestry aged 14 to 69. Genome-wide DNA methylation data from peripheral leukocytes were obtained using the Infinium Human Methylation 450k BeadChip. The epigenome-wide association study meta-analysis identified 39 BP-related CpG sites with <1×10. In silico replication in the CHARGE consortium of 17 010 individuals validated 16 of these CpG sites. Out of the 16 CpG sites, 13 showed novel association with BP. Conversely, out of the 126 CpG sites identified as being associated (<1×10) with BP in the CHARGE consortium, 21 were replicated in the current study. Methylation levels of all the 34 CpG sites that were cross-validated by the current study and the CHARGE consortium were heritable and 6 showed association with gene expression. Furthermore, 9 CpG sites also showed association with BP with <0.05 and consistent direction of the effect in the meta-analysis of the Finnish Twin Cohort (199 twin pairs and 4 singletons; 61% monozygous) and the Netherlands Twin Register (266 twin pairs and 62 singletons; 84% monozygous). Bivariate quantitative genetic modeling of the twin data showed that a majority of the phenotypic correlations between methylation levels of these CpG sites and BP could be explained by shared unique environmental rather than genetic factors, with 100% of the correlations of systolic BP with cg19693031 () and cg00716257 () determined by environmental effects acting on both systolic BP and methylation levels.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/HYPERTENSIONAHA.120.14973DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7295009PMC
July 2020

The effect of LRRK2 loss-of-function variants in humans.

Nat Med 2020 06 27;26(6):869-877. Epub 2020 May 27.

Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.

Human genetic variants predicted to cause loss-of-function of protein-coding genes (pLoF variants) provide natural in vivo models of human gene inactivation and can be valuable indicators of gene function and the potential toxicity of therapeutic inhibitors targeting these genes. Gain-of-kinase-function variants in LRRK2 are known to significantly increase the risk of Parkinson's disease, suggesting that inhibition of LRRK2 kinase activity is a promising therapeutic strategy. While preclinical studies in model organisms have raised some on-target toxicity concerns, the biological consequences of LRRK2 inhibition have not been well characterized in humans. Here, we systematically analyze pLoF variants in LRRK2 observed across 141,456 individuals sequenced in the Genome Aggregation Database (gnomAD), 49,960 exome-sequenced individuals from the UK Biobank and over 4 million participants in the 23andMe genotyped dataset. After stringent variant curation, we identify 1,455 individuals with high-confidence pLoF variants in LRRK2. Experimental validation of three variants, combined with previous work, confirmed reduced protein levels in 82.5% of our cohort. We show that heterozygous pLoF variants in LRRK2 reduce LRRK2 protein levels but that these are not strongly associated with any specific phenotype or disease state. Our results demonstrate the value of large-scale genomic databases and phenotyping of human loss-of-function carriers for target validation in drug discovery.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41591-020-0893-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7303015PMC
June 2020

Gene-educational attainment interactions in a multi-ancestry genome-wide meta-analysis identify novel blood pressure loci.

Mol Psychiatry 2021 06 5;26(6):2111-2125. Epub 2020 May 5.

Health Disparities Research Section, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA.

Educational attainment is widely used as a surrogate for socioeconomic status (SES). Low SES is a risk factor for hypertension and high blood pressure (BP). To identify novel BP loci, we performed multi-ancestry meta-analyses accounting for gene-educational attainment interactions using two variables, "Some College" (yes/no) and "Graduated College" (yes/no). Interactions were evaluated using both a 1 degree of freedom (DF) interaction term and a 2DF joint test of genetic and interaction effects. Analyses were performed for systolic BP, diastolic BP, mean arterial pressure, and pulse pressure. We pursued genome-wide interrogation in Stage 1 studies (N = 117 438) and follow-up on promising variants in Stage 2 studies (N = 293 787) in five ancestry groups. Through combined meta-analyses of Stages 1 and 2, we identified 84 known and 18 novel BP loci at genome-wide significance level (P < 5 × 10). Two novel loci were identified based on the 1DF test of interaction with educational attainment, while the remaining 16 loci were identified through the 2DF joint test of genetic and interaction effects. Ten novel loci were identified in individuals of African ancestry. Several novel loci show strong biological plausibility since they involve physiologic systems implicated in BP regulation. They include genes involved in the central nervous system-adrenal signaling axis (ZDHHC17, CADPS, PIK3C2G), vascular structure and function (GNB3, CDON), and renal function (HAS2 and HAS2-AS1, SLIT3). Collectively, these findings suggest a role of educational attainment or SES in further dissection of the genetic architecture of BP.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41380-020-0719-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7641978PMC
June 2021

Monocytes present age-related changes in phospholipid concentration and decreased energy metabolism.

Aging Cell 2020 04 27;19(4):e13127. Epub 2020 Feb 27.

Molecular Pathology Research Group, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.

Age-related changes at the cellular level include the dysregulation of metabolic and signaling pathways. Analyses of blood leukocytes have revealed a set of alterations that collectively lower their ability to fight infections and resolve inflammation later in life. We studied the transcriptomic, epigenetic, and metabolomic profiles of monocytes extracted from younger adults and individuals over the age of 65 years to map major age-dependent changes in their cellular physiology. We found that the monocytes from older persons displayed a decrease in the expression of ribosomal and mitochondrial protein genes and exhibited hypomethylation at the HLA class I locus. Additionally, we found elevated gene expression associated with cell motility, including the CX3CR1 and ARID5B genes, which have been associated with the development of atherosclerosis. Furthermore, the downregulation of two genes, PLA2G4B and ALOX15B, which belong to the arachidonic acid metabolism pathway involved in phosphatidylcholine conversion to anti-inflammatory lipoxins, correlated with increased phosphatidylcholine content in monocytes from older individuals. We found age-related changes in monocyte metabolic fitness, including reduced mitochondrial function and increased glycose consumption without the capacity to upregulate it during increased metabolic needs, and signs of increased oxidative stress and DNA damage. In conclusion, our results complement existing findings and elucidate the metabolic alterations that occur in monocytes during aging.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/acel.13127DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7189998PMC
April 2020

Associations of autozygosity with a broad range of human phenotypes.

Nat Commun 2019 10 31;10(1):4957. Epub 2019 Oct 31.

Department of Neurology, Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands.

In many species, the offspring of related parents suffer reduced reproductive success, a phenomenon known as inbreeding depression. In humans, the importance of this effect has remained unclear, partly because reproduction between close relatives is both rare and frequently associated with confounding social factors. Here, using genomic inbreeding coefficients (F) for >1.4 million individuals, we show that F is significantly associated (p < 0.0005) with apparently deleterious changes in 32 out of 100 traits analysed. These changes are associated with runs of homozygosity (ROH), but not with common variant homozygosity, suggesting that genetic variants associated with inbreeding depression are predominantly rare. The effect on fertility is striking: F equivalent to the offspring of first cousins is associated with a 55% decrease [95% CI 44-66%] in the odds of having children. Finally, the effects of F are confirmed within full-sibling pairs, where the variation in F is independent of all environmental confounding.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-019-12283-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6823371PMC
October 2019

Variation near MTNR1A associates with early development and interacts with seasons.

J Sleep Res 2020 12 7;29(6):e12925. Epub 2019 Oct 7.

Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland.

Melatonin is a circadian regulatory hormone with neuroprotective properties. We have previously demonstrated the association of the genetic variant rs12506228 near the melatonin receptor 1A gene (MTNR1A) with intolerance to shift-work. Furthermore, this variant has been connected to Alzheimer's disease. Because of the previously suggested role of melatonin signalling in foetal neurocognitive and sleep development, we studied here the association of rs12506228 with early development. The study sample comprised 8-month-old infants from the Finnish CHILD-SLEEP birth cohort (n = 1,301). Parental questionnaires assessed socioemotional, communication and motor development, as well as sleep length and night awakenings. The A allele of rs12506228 showed an association with slower socioemotional (p = .025) and communication (p = .0098) development, but no direct association with sleep. However, the association of the Finnish seasons with infant sleep length interacted with rs12506228. Taken together, rs12506228 near MTNR1A, which has been previously linked to adult and elderly traits, is shown here to associate with slower early cognitive development. In addition, these results suggest that the darker seasons associate with longer infant sleep time, but only in the absence of the rs12506228 AA genotype. Because the risk allele has been connected to fewer brain MT1 melatonin receptors, these associations may reflect the influence of decreased melatonin signalling in early development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/jsr.12925DOI Listing
December 2020

Translating pharmacogenomics into clinical decisions: do not let the perfect be the enemy of the good.

Hum Genomics 2019 08 27;13(1):39. Epub 2019 Aug 27.

Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia.

The field of pharmacogenomics (PGx) is gradually shifting from the reactive testing of single genes toward the proactive testing of multiple genes to improve treatment outcomes, reduce adverse events, and decrease the burden of unnecessary costs for healthcare systems. Despite the progress in the field of pharmacogenomics, its implementation into routine care has been slow due to several barriers. However, in recent years, the number of studies on the implementation of PGx has increased, all providing a wealth of knowledge on different solutions for overcoming the obstacles that have been emphasized over the past years. This review focuses on some of the challenges faced by these initiatives, the solutions and different approaches for testing that they suggest, and the evidence that they provide regarding the benefits of preemptive PGx testing.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s40246-019-0229-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6712791PMC
August 2019
-->