Publications by authors named "Lihua Tang"

67 Publications

Hierarchical Honeycomb-Structured Electret/Triboelectric Nanogenerator for Biomechanical and Morphing Wing Energy Harvesting.

Nanomicro Lett 2021 May 10;13(1):123. Epub 2021 May 10.

Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, Northwestern Polytechnical University, X'ian, 710072, People's Republic of China.

Flexible, compact, lightweight and sustainable power sources are indispensable for modern wearable and personal electronics and small-unmanned aerial vehicles (UAVs). Hierarchical honeycomb has the unique merits of compact mesostructures, excellent energy absorption properties and considerable weight to strength ratios. Herein, a honeycomb-inspired triboelectric nanogenerator (h-TENG) is proposed for biomechanical and UAV morphing wing energy harvesting based on contact triboelectrification wavy surface of cellular honeycomb structure. The wavy surface comprises a multilayered thin film structure (combining polyethylene terephthalate, silver nanowires and fluorinated ethylene propylene) fabricated through high-temperature thermoplastic molding and wafer-level bonding process. With superior synchronization of large amounts of energy generation units with honeycomb cells, the manufactured h-TENG prototype produces the maximum instantaneous open-circuit voltage, short-circuit current and output power of 1207 V, 68.5 μA and 12.4 mW, respectively, corresponding to a remarkable peak power density of 0.275 mW cm (or 2.48 mW g) under hand pressing excitations. Attributed to the excellent elastic property of self-rebounding honeycomb structure, the flexible and transparent h-TENG can be easily pressed, bent and integrated into shoes for real-time insole plantar pressure mapping. The lightweight and compact h-TENG is further installed into a morphing wing of small UAVs for efficiently converting the flapping energy of ailerons into electricity for the first time. This research demonstrates this new conceptualizing single h-TENG device's versatility and viability for broad-range real-world application scenarios.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s40820-021-00644-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8110617PMC
May 2021

A Phase I, First-in-Human Study of GSK2849330, an Anti-HER3 Monoclonal Antibody, in HER3-Expressing Solid Tumors.

Oncologist 2021 Jun 15. Epub 2021 Jun 15.

Department of Medical Oncology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York, USA.

Background: GSK2849330, an anti-HER3 monoclonal antibody that blocks HER3/Neuregulin 1 (NRG1) signaling in cancer cells, is engineered for enhanced antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity. This phase I, first-in-human, open-label study assessed the safety, pharmacokinetics (PK), pharmacodynamics, and preliminary activity of GSK2849330 in patients with HER3-expressing advanced solid tumors.

Patients And Methods: Patients with various tumor types were prospectively selected for HER3 expression by immunohistochemistry; a subset was also screened for NRG1 mRNA expression. In the dose-escalation phase, patients received GSK2849330 1.4-30 mg/kg every 2 weeks, or 3 mg/kg or 30 mg/kg weekly, intravenously (IV). In the dose-expansion phase, patients received 30 mg/kg GSK2849330 IV weekly.

Results: Twenty-nine patients with HER3-expressing cancers, of whom two expressed NRG1, received GSK2849330 (dose escalation: n = 18, dose expansion: n = 11). GSK2849330 was well tolerated. No dose-limiting toxicities were observed. The highest dose, of 30 mg/kg weekly, expected to provide full target engagement, was selected for dose expansion. Treatment-emergent adverse events (AEs) were mostly grade 1 or 2. The most common AEs were diarrhea (66%), fatigue (62%), and decreased appetite (31%). Dose-proportional plasma exposures were achieved, with evidence of HER3 inhibition in paired tissue biopsies. Of 29 patients, only 1 confirmed partial response, lasting 19 months, was noted in a patient with CD74-NRG1-rearranged non-small cell lung cancer (NSCLC).

Conclusion: GSK2849330 demonstrated a favorable safety profile, dose-proportional PK, and evidence of target engagement, but limited antitumor activity in HER3-expressing cancers. The exceptional response seen in a patient with CD74-NRG1-rearranged NSCLC suggests further exploration in NRG1-fusion-positive cancers.

Implications For Practice: This first-in-human study confirms that GSK2849330 is well tolerated. Importantly, across a variety of HER3-expressing advanced tumors, prospective selection by HER3/NRG1 expression alone was insufficient to identify patients who could benefit from treatment with this antibody-dependent cell-mediated cytotoxicity- and complement-dependent cytotoxicity-enhanced anti-HER3 antibody. The only confirmed durable response achieved was in a patient with CD74-NRG1-rearranged lung cancer. This highlights the potential utility of screening for NRG1 fusions prospectively across tumor types to enrich potential responders to anti-HER3 agents in ongoing trials.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/onco.13860DOI Listing
June 2021

Hierarchically Microstructure-Bioinspired Flexible Piezoresistive Bioelectronics.

ACS Nano 2021 Jun 15. Epub 2021 Jun 15.

Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China.

The naturally microstructure-bioinspired piezoresistive sensor for human-machine interaction and human health monitoring represents an attractive opportunity for wearable bioelectronics. However, due to the trade-off between sensitivity and linear detection range, obtaining piezoresistive sensors with both a wide pressure monitoring range and a high sensitivity is still a great challenge. Herein, we design a hierarchically microstructure-bioinspired flexible piezoresistive sensor consisting of a hierarchical polyaniline/polyvinylidene fluoride nanofiber (HPPNF) film sandwiched between two interlocking electrodes with microdome structure. Ascribed to the substantially enlarged 3D deformation rates, these bioelectronics exhibit an ultrahigh sensitivity of 53 kPa, a pressure detection range from 58.4 to 960 Pa, a fast response time of 38 ms, and excellent cycle stability over 50 000 cycles. Furthermore, this conformally skin-adhered sensor successfully demonstrates the monitoring of human physiological signals and movement states, such as wrist pulse, throat activity, spinal posture, and gait recognition. Evidently, this hierarchically microstructure-bioinspired and amplified sensitivity piezoresistive sensor provides a promising strategy for the rapid development of next-generation wearable bioelectronics.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.1c01606DOI Listing
June 2021

Effects of Metal Ions on the Precipitation of Penta-O-galloyl-β-d-glucopyranose by Protein.

J Agric Food Chem 2021 May 25;69(17):5059-5066. Epub 2021 Apr 25.

Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, China.

In this study, the effects of metal ions (Al, Fe, Cu, and Zn) on precipitation of a purified gallotannin 1,2,3,4,6-penta-O-galloyl-β-d-glucopyranose (PGG) by bovine serum albumin (BSA) were quantitatively analyzed. The stoichiometric ratios of the complexation of metal ions to PGG and methyl gallate (MeG) which can be defined as gallotannins monomer were also explored. The results showed that the addition of metal ions could reduce the solubility of PGG-protein complex and increase the PGG-protein precipitation. Precipitation studies showed that Al and Fe with a higher stoichiometric ratio to PGG and MeG had greater effects on PGG-protein precipitation than Cu and Zn. The results of this study suggested that metal ions could combine with PGG to form PGG-metal complex and interact with protein to form PGG-metal-protein ternary complexes, which resulted in the increase of PGG-protein precipitation. Consequently, a model of interaction between metal ions and PGG-protein precipitation was proposed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.1c01185DOI Listing
May 2021

Litchi anthracnose caused by Colletotrichum karstii in Guangxi, China.

Plant Dis 2021 Apr 21. Epub 2021 Apr 21.

University of Guelph, Environmental Sciences, 50 Stone Road East, Guelph, Ontario, Canada, N1G2W1;

Litchi (Litchi chinensis Sonn.), a native fruit tree from southern China, has been planted in many subtropical and tropical countries for its fruit which are considered delicious and of medicinal value (Anderson et al. 2013). Anthracnose, one of the most important diseases on litchi, can cause flower drop, fruit drop, and fruit rot. Infected leaves form dark brown spots which turn to reddish brown with gray-white edges. Infected fruits formed dark brown spots which developed eventually to entire black rotted fruits. On both tissues, small dots of acervuli appeared with high humidity (Lai et al. 2004). On 20 April 2019, two leaf spots samples of litchi from different plants were collected from a 2 ha litchi orchard in Xintang Town (N 22.38˚, E 108.61˚), Qinzhou City, Guangxi province. The incidence of leaf spots in the orchard was above 20%. Each sample was cut into multiple pieces targeting zone between symptomatic and healthy plant tissues, disinfected with 75% ethanol for 10 s and 1% sodium hypochlorite (NaClO) for 1 min, and then washed three times with sterilized distilled water. The sterilized leaf tissues were placed on potato dextrose agar (PDA) and incubated at 28°C in darkness for one week. The growing hyphae from each sample was transferred to fresh PDA. The pieces from each leaf yielded a similar fungal morphotype over 75% of the time, and a representative one from each leaf was retained and called LZ1-1 and LZ3-1. The resulting colonies were incubated on the PDA for 7 days with gray to white aerial tufted hyphae, and abundant colorless to pale orange conidia in center of colony. The conidia were smooth, apex obtuse, base truncate, straight, cylindrical, and the contents remained granular. The conidial size of LZ1-1 was 10.6 to 21.4 × 4.5 to 9.1 μm (n=100) and that of LZ3-1 was 12.7 to 16.7 × 5.5 to 8.0 μm (n=100). Appressoria of LZ1-1 (6.9 to 14.9 × 6.0 to 11.1 μm) (n=100) and LZ3-1 (6.5 to 15.4 × 5.4 to 11.4 μm) (n=100) were pale to medium brown, ovoid to bullet-shaped, not nodose, and smooth-walled to undulate. DNA was extracted from two isolates, followed by PCR amplification and sequencing using primers for the rDNA internal transcribed spacer (ITS), actin (ACT), calmodulin (CAL), chitin synthase (CHS-1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and β-tubulin (TUB2) (Damm et al. 2012). The resulting sequences were deposited in GenBank (ITS: MW494453 and MW494454, ACT: MW495034 and MW495035, CAL: MW495036 and MW495037, CHS-1: MW495038 and MW495039, GAPDH: MW495040 and MW495041, TUB2: MW495042 and MW495043). The concatenated sequences comprised of six genomic regions of LZ1-1, LZ3-1 and other sequences of Colletotrichum obtained from GenBank were used to construct a Neighbor-Joining (NJ) tree with 1000 bootstrap replicates using MEGA4 (Tamura et al. 2007). The results revealed both LZ1-1 and LZ3-1 were clustered with type strain of C. karstii with high bootstrap value. The pathogenicity of the two isolates was determined by inoculating on leaves of 1-year-old litchi saplings in the greenhouse. Slight scratches were made on the surface of healthy leaves and 10 μL of spore suspension (106 conidia/mL) in 0.1% Tween 20 were inoculated onto each wounded spot. The blank control groups were inoculated with 10 μL 0.1% Tween 20. Each isolate was inoculated onto at least 27 leaves of three saplings, with each leaf wounded at spots. The inoculated saplings were placed in a greenhouse (12 h/12 h light/dark, 25 ± 2°C), and humidity maintained by covering plastic bags. The leaves inoculated with spore suspension showed reddish-brown spots after one week, while no symptoms were observed in the control. Each fungal isolate was consistently reisolated from inoculated leaves, thus fulfilling Koch's postulates. It was reported that members of the C. acutatum species complex and the C. gloeosporioides species complex could cause anthracnose on litchi (Ling et al. 2019), including C. gloeosporioides, C. siamense, C. fioriniae, and C. simmondsii (Ling et al. 2019; 2020). To our knowledge, this is the first report of anthracnose on litchi in China caused by C. karstii, a member of the C. boninense species complex. This study expands the understanding of the pathogen of anthracnose on litchi which can lead to improved management and control.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-01-21-0196-PDNDOI Listing
April 2021

First Report of Anthracnose of Papaya (Carica papaya L.) Caused by Colletotrichum siamense in China.

Plant Dis 2021 Feb 18. Epub 2021 Feb 18.

Guangxi Academy of Agricultural Sciences, Institute of plant protection, Nanning, Guangxi, China;

Papaya (Carica papaya L.) is a rosaceous plant widely grown in China, which is economically important. Anthracnose caused by Colletotrichum sp. is an important postharvest disease, which severely affects the quality of papaya fruits (Liu et al., 2019). During April 2020, some mature papaya fruits with typical anthracnose symptoms were observed in Fusui, Nanning, Guangxi, China with an average of 30% disease incidence (DI) and over 60% DI in some orchards. Initial symptoms of these papayas appeared as watery lesions, which turned dark brown, sunken, with a conidial mass appearing on the lesions under humid and warm conditions. The disease severity varied among fruits, with some showing tiny light brown spots, and some ripe fruits presenting brownish, rounded, necrotic and depressed lesions over part of their surface. Samples from two papaya plantations (107.54°E, 22.38°N) were collected, and brought to the laboratory. Symptomatic diseased tissues were cut into 5 × 5 mm pieces, surface sterilized with 2% (v/v) sodium hypochlorite for 1 minute, and rinsed three times with sterilized water. The pieces were then placed on potato dextrose agar (PDA). After incubation at 25°C in the dark for one week, colonies with uniform morphology were obtained. The aerial mycelium on PDA was white on top side, and concentric rings of salmon acervuli on the underside. A gelatinous layer of spores was observed on part of PDA plates after 7 days at 28°C. The conidia were elliptical, aseptate and hyaline (Zhang et al., 2020). The length and width of 60 conidia were measured for each of the two representative isolates, MG2-1 and MG3-1, and these averaged 13.10 × 5.11 μm and 14.45 × 5.95 μm. DNA was extracted from mycelia of these two isolates with the DNA secure Plant Kit (TIANGEN, Biotech, China). The internal transcribed spacer (ITS), partial actin (ACT), calmodulin (CAL), chitin synthase (CHS), β-tubulin 2 (TUB2) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) regions were amplified by PCR and sequenced. The sequences were deposited into GenBank with accessions MT904003, MT904004, and MT898650 to MT898659. BLASTN analyses against the GenBank database showed that they all had over 99% identity to the type strain of Colletotrichum siamense isolate ICMP 18642 (GenBank accession numbers JX010278, GQ856775, JX009709, GQ856730, JX010410, JX010019) (Weir et al., 2012). A phylogenetic tree based on the combined ITS, ACT, CAL, CHS, TUB2 and GAPDH sequences using the Neighbor-joining algorithm also showed that the isolates were C. siamense. Pathogenicity tests were conducted on 24 mature, healthy and surface-sterilized papaya fruits. On 12 papaya fruits, three well separated wounded sites were made for inoculation, and for each wounded site, six adjacent pinhole wounds were made in a 5-mm-diameter circular area using a sterilized needle. A 10 µl aliquot of 1 × 106 conidia/ml suspension of each of the isolates (MG2-1 and MG3-1) was inoculated into each wound. For each isolate, there were six replicate fruits. The control fruits were inoculated with sterile distilled water. The same inoculation was applied to 12 non-wound papaya fruits. Fruits were then placed in boxes which were first washed with 75% alcohol and lined with autoclaved filter paper moistened with sterilized distilled water to maintain high humidity. The boxes were then sealed and incubated at 28°C. After 10 days, all the inoculated fruits showed symptoms, while the fruits that were mock inoculated were without symptoms. Koch's postulates were fulfilled by re-isolation of C. siamense from diseased fruits. To our knowledge, this is the first report of C. siamense causing anthracnose of papaya in China. This finding will enable better control of anthracnose disease caused by C. siamense on papaya.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-10-20-2154-PDNDOI Listing
February 2021

Fusarium species associated with leaf spots of mango in China.

Microb Pathog 2021 Jan 13;150:104736. Epub 2021 Jan 13.

Plant Breeding Institute, University of Sydney, Cobbitty, NSW, 2570, Australia.

Mango is one of the important commercially cultivated fruit crops in southern China. In continuing research on foliar diseases of mango in south of China during 2016-2017, leaf spot disease was common at all mango orchards investigated. The purpose of this study was to investigate Fusarium species associated with leaf spots of mango in the main production areas of China, and to identify them to species. Twenty-two Fusarium isolates were obtained from diseased leaves from seven provinces (Fujian, Guangdong, Guangxi, Guizhou, Hainan, Sichuan and Yunnan), and then identified using morphological characteristics and phylogenetic analysis. These isolates were from seven species: F. concentricum, F. hainanense, F. mangiferae, F. pernambucanum, F. proliferatum, F. sulawesiense, and F. verticillioides. We found all 22 isolates to be capable of causing leaf spot symptoms on artificially wounded leaves. To our knowledge, this is the first report of F. concentricum, F. hainanense, F. mangiferae, F. pernambucanum, F. sulawesiense and F. verticillioides associated with leaf spots on mango in China, and the first for F. concentricum, F. hainanense, F. pernambucanum, F. sulawesiense from mango worldwide. This is one of the few reports on Fusarium species as potential causal agents of mango leaf spots.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micpath.2021.104736DOI Listing
January 2021

First Report of Colletotrichum siamense Causing Leaf Spot on Alocasia macrorrhiza in China.

Plant Dis 2021 Jan 12. Epub 2021 Jan 12.

Guangxi Agricultural Vocation-Technical College, Department of Biotechnology, Nanning, Guangxi, China;

Alocasia macrorrhiza (L.) Schott, known as Alocasia is found in the Araceae, and is widely planted in southern China for its ornamental and medicinal value. This plant has a wide range of pharmacological effects, and has potential anti-tumor activity (Lei et al. 2013). In July of 2019, leaf spots were observed on A. macrorrhiza in the Xixiangtang Area, Nanning, Guangxi, China. Disease symptoms began with water-soaked yellow-green spots and progressed to form brown, round or oval lesions with yellow halos. Under severe conditions, spots merged into larger irregular lesions. More than 60% of the plants in a 0.5 ha field showed disease symptoms. Symptomatic leaves were collected and cut into small pieces (3×3 mm). Leaf pieces from the margin of the necrotic tissue were surface sterilized in 75% alcohol for 10 s, followed by 2% sodium hypochlorite solution for 2 min, then rinsed three times in sterile distilled water. Tissues were plated on potato dextrose agar (PDA) and incubated at 28°C for 5 days in the dark. Among over 30 isolates, most shared a similar morphology, the isolation rate of these was 86.7% and three of these (GY1-1A, GY1-1B, and GY1-1C) were chosen for single-spore purification and used for fungal morphological characterization and identification. White feathery aerial mycelia with olivaceous gray mycelia below were observed in 7-day cultures. After 14 days, orange conidia were observed. Conidia were hyaline, guttulate, smooth, one-celled, and cylindrical, averaged 13.79 μm × 5.26 μm, 13.89 μm × 5.33 μm and 13.92 μm × 5.42 μm for GY1-1A, GY1-1B and GY1-1C, respectively. Appressoria were mostly irregular in outline, deeply lobed or lightly lobed, gray brown to dark brown, conidial appressoria were 7.93 to 8.74 μm × 5.26 to 5.42 μm, mycelial appressoria were 7.15 to 10.11 μm × 5.60 to 7.44 μm. These morphological characteristics were similar to the C. siamense as previously described (Weir et al. 2012). The partial internal transcribed spacer (ITS) regions, actin (ACT), chitin synthase (CHS-1), glyceraldehydes-3-phosphate dehydrogenase (GAPDH), calmodulin (CAL), β-tubulin (TUB2), and the intergenic region of apn2 and MAT1-2-1 (ApMAT) were amplified from genomic DNA for the three isolates using primers ITS4/ITS1 (White et al. 1990), ACT-512F/ACT-783R, CHS-79F/CHS-354R, GDF1/GDR1, CL1C/CL2C, Bt2a/Bt2b (Weir et al. 2012), and AM-F/AM-R (Silva et al. 2012) and sequenced. All sequences showed over 99% identity with C. siamense and were deposited in GenBank (ITS, MW040179-MW040181; ACT, MW049220-MW049222; CHS-1, MW049229-MW049231; GAPDH, MW049232-MW049234; CAL, MW049226-MW049228; TUB, MW049235-MW049237; ApMAT, MW049223-MW049225). Maximum Likelihood (ML) phylogenetic tree was constructed with MEGA 5 using the concatenation of multiple sequences (ACT, CHS-1, GAPDH, ITS, TUB2, CAL). According to the phylogenetic tree, all three isolates were found with C. siamense with 95% bootstrap support. To confirm pathogenicity, three sets (three plants per set) of healthy leaves were slightly scratched with autoclaved toothpicks at each of eight locations. Each inoculation location was a cross (2 mm length) and inoculation location was at least 3 cm apart. Ten μl of conidial suspension (106 conidia /ml in 0.1% sterile Tween 20) was applied to the inoculation areas. A control group was mock inoculated with 0.1% sterile Tween 20. Plants were covered with plastic bags to maintain a high humidity environment and placed in a 28°C growth chamber with constant light for 7 days. Inoculated leaves showed yellowish brown spots (0.4 × 0.65 cm), but no symptoms were observed in the control group. The fungus was reisolated from inoculated leaves, and these isolates matched the molecular and morphological characteristics of the original isolates confirming Koch's postulates. Reported hosts of this pathogen include Coffea arabica, Carica papaya, Melilotus indicus and Litchi chinensis (Weir et al. 2012; Qin et al. 2017; Ling et al. 2019) and so on. To our knowledge, this is the first report of C. siamense causing leaf spot on A. macrorrhiza in China. The identification of this pathogen provides a foundation for the management of leaf spot on this medicinal plant.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-11-20-2361-PDNDOI Listing
January 2021

Efficacy and safety of calcium, magnesium, potassium, and sodium oxybates (lower-sodium oxybate [LXB]; JZP-258) in a placebo-controlled, double-blind, randomized withdrawal study in adults with narcolepsy with cataplexy.

Sleep 2021 03;44(3)

Department of Neurology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic.

Study Objectives: Evaluate efficacy and safety of lower-sodium oxybate (LXB), a novel oxybate medication with 92% less sodium than sodium oxybate (SXB).

Methods: Adults aged 18-70 years with narcolepsy with cataplexy were eligible. The study included a ≤30-day screening period; a 12-week, open-label, optimized treatment and titration period to transition to LXB from previous medications for the treatment of cataplexy; a 2-week stable-dose period (SDP); a 2-week, double-blind, randomized withdrawal period (DBRWP); and a 2-week safety follow-up. During DBRWP, participants were randomized 1:1 to placebo or to continue LXB treatment.

Results: Efficacy was assessed in 134 participants who received randomized treatment, and safety was assessed in all enrolled participants (N = 201). Statistically significant worsening of symptoms was observed in participants randomized to placebo, with median (first quartile [Q1], third quartile [Q3]) change in weekly number of cataplexy attacks from SDP to DBRWP (primary efficacy endpoint) in the placebo group of 2.35 (0.00, 11.61) versus 0.00 (-0.49, 1.75) in the LXB group (p < 0.0001; mean [standard deviation, SD] change: 11.46 [24.751] vs 0.12 [5.772]), and median (Q1, Q3) change in Epworth Sleepiness Scale score (key secondary efficacy endpoint) of 2.0 (0.0, 5.0) in the placebo group versus 0.0 (-1.0, 1.0) in the LXB group (p < 0.0001; mean [SD] change: 3.0 [4.68] vs 0.0 [2.90]). The most common treatment-emergent adverse events with LXB were headache (20.4%), nausea (12.9%), and dizziness (10.4%).

Conclusions: Efficacy of LXB for the treatment of cataplexy and excessive daytime sleepiness was demonstrated. The safety profile of LXB was consistent with SXB.

Clinical Trial Registration: NCT03030599.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/sleep/zsaa206DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7953213PMC
March 2021

Calcium Channel Blocker Nifedipine Suppresses Colorectal Cancer Progression and Immune Escape by Preventing NFAT2 Nuclear Translocation.

Cell Rep 2020 10;33(4):108327

Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangzhou, China. Electronic address:

Abnormal activation of calcium channels has been shown to play crucial roles in tumor occurrence and development. However, the role of inhibitors targeting calcium channels in tumor progression and immune regulation remains unclear, and their clinical applications are still limited. We show that nifedipine (NIFE), a calcium channel blocker, inhibits calcium influx to impair nuclear factor of activated T cell 2 (NFAT2) dephosphorylation, activation, and nuclear translocation, thus preventing transcriptional activation of downstream signaling molecules to suppress colorectal cancer (CRC) proliferation and metastasis. In addition, NIFE decreases expression of programmed death-ligand 1 (PD-L1) on CRC cells and programmed death-1 (PD-1) on CD8 T cells and reactivates tumor immune monitoring, which may stimulate or enhance PD-1-based antitumor immunotherapy. Our findings provide direct evidence that NIFE is a promising clinical therapy to treat patients with advanced CRC by affecting the tumor itself and tumor immunity. NIFE may be a promising therapeutic option to enhance effectiveness of immune checkpoint blockade therapy in CRC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2020.108327DOI Listing
October 2020

First Report of Leaf Spot Caused by Colletotrichum fructicola and C. siamense on Zizyphus mauritiana in Guangxi, China.

Plant Dis 2020 Oct 27. Epub 2020 Oct 27.

School of Environmental Sciences, 50 Stone Road East, Guelph, Ontario, Canada, N1G2W1;

Zizyphus mauritiana Lam. is an important tropical fruit tree and has significant economic value. It is widely planted in Hainan, Guangdong, Guangxi and Fujian provinces in China (Yang et al. 2017). In March 2019, leaf spot was observed on leaves of Z. mauritiana at Bagui fields in Nanning, Guangxi, China, with incidence exceeding 50%. Symptomatic leaves developed a yellow to tan-brown sunken lesion and finally abscised. To isolate the pathogen causing the symptoms, small pieces (5 × 5 mm) of infected leaves were surface sterilized by exposure to 75% ethanol for 10 sec, 1% sodium hypochlorite for 1 min and rinsed three times in sterile water. Fifty pieces were isolated, surface sterilized, and pieces were plated onto potato dextrose agar (PDA) and grown at 28°C for 7 days. The isolation rate of Colletotrichum species was 100%. Three representative isolates (DQZ3-1, DQZ3-2 and DQZ3-3) were selected for further study. Mycelia were greyish-white for all three isolates, with isolate DQZ3-1 also appearing dark green in the center of the colony. Conidia were elliptical, aseptate and hyaline, with sizes of 13.4 ± 0.12 µm × 5.7 ± 0.1 µm, 14.8 ± 0.1 µm × 5.8 ± 0.1 µm and 15.1 ± 0.1 µm × 5.5 ± 0.1 µm for DQZ3-1, DQZ3-2 and DQZ3-3, respectively. Genomic DNA was extracted using the DNAsecure Plant Kit [Tiangen Biotech (Beijing) Co., Ltd] and the internal transcribed spacer (ITS), partial actin (ACT), calmodulin (CAL), chitin synthase (CHS-1), beta-tubulin (TUB2), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes were sequenced (Weir et al. 2012). Phylogenetic analysis of the three isolates was performed with MEGA-X (Version 10.0) based on sequences of multiple loci (ITS, ACT, CAL, CHS-1, TUB2 and GAPDH) using Maximum Likelihood analysis. Isolate DQZ3-1 was identified as C. fructicola, and the other two isolates, DQZ3-2 and DQZ3-3, were identified as C. siamense (accessions MT039396 to MT039410, for ACT, CAL, CHS-1, GAPDH and TUB2 of DQZ3-1, DQZ3-2 and DQZ3-3; MT041651 to MT041653 for ITS of DQZ3-1, DQZ3-2 and DQZ3-3). Pathogenicity tests were conducted on 1-year-old plants. Young, healthy leaves were artificially wounded by gently scratching with a sterile needle and 10 µl droplets of conidial suspension (106 spores/ml) applied per wound site for each isolate. Some wounded leaves were inoculated with 10 µl droplets of water as controls. Each isolate was inoculated onto three plants, with 15 leaves at least for each plant, same as controls. All inoculated plants were sprayed with water and covered with plastic bags to maintain high humidity. Symptomatic lesions were observed on the inoculated leaves after 7 days at 28°C, whereas no symptoms were observed on the control leaves. To fulfill Koch's postulates, fungi were re-isolated from 50 symptomatic leaf pieces and fungi re-isolated from each leaf piece were morphologically identical to the inoculated isolates, for a 100% isolation frequency. To our knowledge, this is the first report of leaf spot caused by C. fructicola and C. siamense on Z. mauritiana worldwide. This research may accelerate the development of future epidemiological studies and management strategies for anthracnose caused by C. fructicola and C. siamense on Z. mauritiana.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-09-20-1863-PDNDOI Listing
October 2020

First report of causing anthracnose on in China.

Plant Dis 2020 Oct 7. Epub 2020 Oct 7.

University of Guelph, Environmental Sciences, 50 Stone Road East, Guelph, Ontario, Canada, N1G2W1;

(Kunth) Baehni (= A. DC.) is a fruit crop planted in southern China (Gao et al. 2019). It is originally from Central America, and also grown there commercially as well as in some American states (Fadzilah et al. 2018). In March 2019, a leaf spot disease was found on in Baoshan, Yunnan, China. Field surveys were done in a 0.06 ha orchard in Yunnan Province. Leaf spots were found on 90% of six-year-old plants in this field and were observed in other planting areas. The symptoms initially appeared as small, round, brown spots. As the disease developed, the center of the lesions was sunken with a dark brown border (Fig. 1). Under severe conditions, some spots were joined into larger irregular spots, and even whole leaves died. The disease severity of different plants varied, and some leaves showed only a few brown spots while others showed many spots. Small fragments of diseased tissues (3×3 mm) were disinfected in 75% ethanol for 10 s, 1% NaClO for 1 min, and rinsed three times in sterilized water. Then, tissues were placed onto potato dextrose agar (PDA), and incubated at 25°C in the dark for 5 days. Fungal isolates with similar morphology were consistently recovered from diseased tissues. The 25 colonies were initially cottony, pale white to pale gray on the upper side and greyish-green with black zonation on the underside of plates. Conidia were single-celled and hyaline, aseptate, straight, and cylindrical, with rounded ends (Fig. 1B). The length and width of 200 conidia were measured for two representative isolates, DHG-1 and DHG-2, and these averaged 14.48 × 5.59 μm and 14.92 × 5.57 μm. Appressoria were ovoid, sometimes clavate, brown, averaged 7.47 × 5.86 μm and 7.25 × 5.85 μm (n=30). Brown and globose ascocarp were observed on the leaves of . Asci were unitunicate, thin-walled, 6-8 spored, clavate, averaged 51.53×13.01 μm and 50.21 × 13.32 μm (n=30). Ascospores were hyaline, one-celled, slightly curved to curved with obtuse to slightly rounded ends, averaged 14.64×5.97 μm and 15.19 × 6.23 μm (n=30). These two isolates were selected for molecular identification. DNA was extracted from mycelia with the DNA secure Plant Kit (TIANGEN, Biotech, China). For further molecular identification, the internal transcribed spacer (ITS), partial actin (ACT), calmodulin (CAL), chitin synthase (CHS-1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), beta-tubulin (TUB2), and the Apn2-Mat1-2 intergenic spacer and partial mating type (Mat1-2) gene (ApMat) genes of the strains (DHG-1, DHG-2) were amplified using the primer pairs ITS1/ITS4, ACT-512F/ACT-783R, CL1C/CL2C, CHS-79F/CHS-345R, GDF1/GDR1, T1/Bt-2b, and AM-F/AM-R (Weir et al. 2012; Silva et al. 2012), respectively.The sequences were obtained and compared with GenBank and they all showed over 99% identity to the type strain of ICMP 18581 (Accession nos. JX010165, JX010033, JQ807838, FJ907426, JX010405, JX009866, and FJ917508) (Weir et al. 2012). A phylogenetic tree based on the combined ITS, ACT, CAL, CHS-1, TUB2, GAPDH and ApMat sequences using the Neighbor-joining algorithm revealed that the isolates were (Fig. 2). The sequences were deposited into GenBank with accession MN955541, MN955542, and MN966581 to MN966592. Pathogenicity tests were conducted on eighteen healthy and tender leaves of six 1-year-old plants in a greenhouse. The experiment was repeated twice. The length and width of the inoculated leaves were between 8-13 cm × 2.5-3.6 cm. The epidermis of each tested leaf was lightly scratched in six separate areas with a sterilized needle. Each isolate was inoculated onto at least three wounded leaves by placing 20 μL of a conidial suspension (10 conidia/mL) on the wound sites. Control leaves were also wounded and inoculated with distilled water. All the plants were then sprayed with distilled water and covered with plastic bags. After 10 days, initial symptoms appeared as circular and deep yellow spots. After a few more days, the spots became brown, enlarged to up to 4.0 mm which was similar to symptoms observed in the field, whereas controls remained symptomless. Koch's postulates were fulfilled by re-isolation of from diseased leaves, and identification confirmed by sequencing. has been associated with anthracnose on mango, apple, pear and cassava (Oliveira et al. 2018). To our knowledge, this is the first report of associated with anthracnose of worldwide. These results will provide crucial information for future epidemiological studies and for management of this disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-02-20-0253-PDNDOI Listing
October 2020

: Identification of personalized alternative splicing based neoantigens with RNA-seq.

Aging (Albany NY) 2020 07 22;12(14):14633-14648. Epub 2020 Jul 22.

Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Tongji University, Shanghai 200009, China.

Cancer neoantigens have shown great potential in immunotherapy, while current software focuses on identifying neoantigens which are derived from SNVs, indels or gene fusions. Alternative splicing widely occurs in tumor samples and it has been proven to contribute to the generation of candidate neoantigens. Here we present , which is an integrated computational pipeline for the identification of personalized Alternative Splicing based NEOantigens with RNA-seq. Our analyses showed that could identify neopeptides which are presented by MHC I complex through mass spectrometry data validation. When was applied to two immunotherapy-treated cohorts, we found that alternative splicing based neopeptides generally have a higher immune score than that of somatic neopeptides and alternative splicing based neopeptides could be a marker to predict patient survival pattern. Our identification of alternative splicing derived neopeptides would contribute to a more complete understanding of the tumor immune landscape. Prediction of patient-specific alternative splicing neopeptides has the potential to contribute to the development of personalized cancer vaccines.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.18632/aging.103516DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7425491PMC
July 2020

MiR-451a restrains the growth and metastatic phenotypes of papillary thyroid carcinoma cells via inhibiting ZEB1.

Biomed Pharmacother 2020 Jul 23;127:109901. Epub 2020 Apr 23.

Department of Endocrinology, Ninth People's Hospital of Chongqing, No. 69 Jialing Village, BeiBei District, Chongqing, China. Electronic address:

MicroRNAs (miRNAs) are known to be critical regulators in cancer progression. MiR-451a is reported to be involved in the progression of many different forms of cancers, including osteosarcoma, colorectal cancer, and breast carcinoma. In this study, we illuminated the possible roles of miR-451a in the development of papillary thyroid carcinoma (PTC) cells in vitro and in vivo. MiR-451a was markedly down-expressed in PTC sample compared with paratumor tissue. Upregulation of miR-451a repressed PTC cells proliferation, migration ability and inhibited the invasiveness of PTC cells in vitro. Additional, miR-451a suppressed PTC cells growth and the lung metastasis of PTC cells in vivo, whereas downregulation of miR-451a caused opposite outcomes. Importantly, miR-451a inversely modulated the expression of Zinc Finger E-Box Binding Homeobox 1 (ZEB1) by directly binding to the 3' untranslated region (UTR) of ZEB1 in PTC cells. The level of ZEB1 was negatively associated with miR-451a level in PTC tissues, and ZEB1 silencing mimicked the suppressive impacts of miR-451a on the proliferation, mobility, and invasive phenotypes of PTC cells. ZEB1 overexpression abrogated the inhibitory impacts of miR-451a on PTC cells. Together, this study revealed that miR-451a restrained the growth and metastatic phenotypes of PTC cells through targeting ZEB1.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2020.109901DOI Listing
July 2020

Untargeted Metabolite Profiling of Antimicrobial Compounds in the Brown Film of Mycelium via LC-MS/MS Analysis.

ACS Omega 2020 Apr 27;5(13):7567-7575. Epub 2020 Mar 27.

National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.

The brown film (BF) of mycelium has been reported to exert biological activities during mushroom cultivation; however, to date, there is limited information on its chemical composition. In this study, untargeted metabolomics analysis was performed via liquid chromatography-mass spectrometry (LC-MS), and the results were used to screen the antimicrobial compounds. A total of 236 differential metabolites were found among the BF stages compared with the white hyphal stage. Among them, five important antimicrobial metabolites related to antimicrobial activities, namely, 6-deoxyerythronolide B, tanikolide, hydroxyanthraquinone, benzylideneacetone, and 9-OxooTrE, were present at high levels in the BF samples. The score plots of the principal component analysis indicated that the samples from four time points could be classified into two groups. This study provided a comprehensive profile of the antimicrobial compounds produced during BF formation and partly clarified the antibacterial and antifungal mechanism of the BF of mycelium.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsomega.0c00398DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7144172PMC
April 2020

Lack of transmission of Sugarcane yellow leaf virus in Florida from Columbus grass and sugarcane to sugarcane with aphids or mites.

PLoS One 2020 6;15(3):e0230066. Epub 2020 Mar 6.

Department of Plant Pathology, Everglades Research and Education Center, University of Florida, Belle Glade, Florida, United States of America.

Sugarcane yellow leaf virus (SCYLV), the causal agent of yellow leaf disease, naturally infects at least three plant species in Florida: sugarcane (Saccharum spp.), the weed Columbus grass (Sorghum almum) and cultivated sorghum (S. bicolor). All three hosts are also colonized by the sugarcane aphid (Melanaphis sacchari), the main vector of SCYLV worldwide. To understand the high incidence of SCYLV observed in sugarcane commercial fields and in germplasm collections, we investigated the transmission efficiency of SCYLV from sugarcane and Columbus grass to sugarcane using the sugarcane aphid and a spider mite (Oligonychus grypus) that also tested positive for SCYLV in Florida. Healthy and SCYLV-infected leaf pieces of sugarcane and Columbus grass carrying viruliferous aphids or spider mites were transferred to virus-free plants of the yellow leaf susceptible sugarcane cultivar CP96-1252. Three- and 6-months post inoculation, the 108 aphid-inoculated plants of Columbus grass and the 90 mite-inoculated plants of sugarcane tested negative for SCYLV by tissue blot immunoassay (TBIA) or reverse transcription polymerase chain reaction (RT-PCR). Similar results were obtained for 162 aphid-inoculated plants of sugarcane, except for two plants that tested positive for SCYLV by TBIA and RT-PCR. In two field experiments planted with SCYLV-free and virus-infected sugarcane (cultivar CP96-1252), only 18-28% of healthy plants became infected during a 24- to 28-month period. SCYLV prevalence in these field experiments did not differ between aphicide treated and untreated plots. Incidence of M. sacchari haplotypes in the Everglades agricultural area also indicated that the predominant haplotype that is currently colonizing sugarcane was not a vector of SCYLV in Florida. Lack of virus transmission by the spider mite suggested that this arthropod only acquired the virus when feeding on infected plants but was unable to transmit SCYLV. The current vector of SCYLV in Florida remains to be identified.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0230066PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7059971PMC
June 2020

Capture of high energy orbit of Duffing oscillator with time-varying parameters.

Chaos 2020 Feb;30(2):023106

College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China.

This work investigates the time response of a Duffing oscillator with time-varying parameters (excitation frequency, linear stiffness, and mass) by approximate analytical and numerical methods. When the excitation frequency sweep covers the multisolution range, the characteristics of the response (maximum response, jump-up frequency, and jump-down frequency) mainly depend on the frequency sweep rate. If the frequency sweep is ended in the multisolution range, the sweep rate determines the energy orbit that the final response will capture. The results can be explained by comparing the state spaces of the oscillator with the change of basin of attraction of the high-energy orbit during the sweep. Furthermore, if the excitation is fixed at a specific frequency in the multisolution range, a method of natural frequency temporary modulation is proposed for the capture of the high-energy orbit. For practical realization, this method is completed by two ways, that is, the linear stiffness temporary modulation and mass temporary modulation. The modulation schedules of time-varying linear stiffness and mass are determined quantitatively, and it is proved that they could help capture the high-energy orbit similar to the excitation frequency sweep. The developed methods and results of this work can provide the guidelines to design nonlinear systems to work on preferred energy orbit.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5129424DOI Listing
February 2020

Agrobacterium-mediated transformation of arthroconidia obtained from the edible mushroom Hypsizygus marmoreus.

J Microbiol Methods 2020 04 21;171:105878. Epub 2020 Feb 21.

College of Food Science, Shanghai Ocean University, 999 Huchenghuan Road, Pudong District, Shanghai 201306, China; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jingqi road, Fengxian District, Shanghai 201403, China. Electronic address:

Using the carboxin resistance gene from Pleurotus eryngii as a selective marker, we introduced foreign DNA into the arthroconidia of Hypsizygus marmoreus through Agrobacterium-mediated transformation. The function of the exogenous GUS (β-glucuronidase) gene driven by the CaMV35S promoter was detected in the transformants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mimet.2020.105878DOI Listing
April 2020

Identification and Characterization of Pestalotioid Fungi Causing Leaf Spots on Mango in Southern China.

Plant Dis 2020 Apr 15;104(4):1207-1213. Epub 2020 Feb 15.

Plant Breeding Institute, The University of Sydney, Cobbitty, NSW 2570, Australia.

Mango is an economically important fruit crop in southern China. However, leaf spots restrict the development of mango trees, reducing the yield and production. Pestalotioid fungi are one of the major agents causing leaf spots on mango. During 2016 and 2017, 21 isolates of pestalotioid fungi associated with leaf spots on mango leaves were collected from five provinces in southern China: Guangxi, Hainan, Yunnan, Guangdong, and Fujian. All 21 isolates were subjected to morphological characterization and DNA sequence analysis. The morphological data were combined with analyses of concatenated sequences of the ITS (internal transcribed spacer), TEF 1-α (translation elongation factor), and TUB2 (β-tubulin) for higher resolution of the species identity of these isolates. The results showed that these isolates belong to , , , , , , , and Pathogenicity test results showed that all these species could cause symptoms. On detached mango leaves (cv. Tainong), early foliar symptoms on leaves were small yellow-to-brown lesions. Later, these spots expanded with uneven borders, turned white to gray, and coalesced to form larger gray patches. To our knowledge, this is the first description of , , , , , , or as causal agents for leaf spots on mango worldwide.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-03-19-0438-REDOI Listing
April 2020

Intra-articular injection of indomethacin-methotrexate in situ hydrogel for the synergistic treatment of rheumatoid arthritis.

J Mater Chem B 2020 02 13;8(5):993-1007. Epub 2020 Jan 13.

Department of Pharmaceutics, Shenyang Pharmaceutical University, Wen Hua Road No. 103, Shenyang, China.

Rheumatoid arthritis is a chronic systemic autoimmune disease that causes joint swelling and cartilage damage. The objective of the present work was to develop a temperature-sensitive hydrogel (D-NGel) containing nanoparticles (D-NPs), which could simultaneously deliver combination indomethacin and methotrexate. D-NPs were formed by multiple non-covalent interactions between PEI-SS and the carboxyl-containing hydrophobic small molecule drugs IND and MTX, which were then loaded into a temperature-sensitive hydrogel matrix. The T of the temperature-sensitive hydrogel matrix composed of 27% F127 and 10% F68 was 33 °C and the gelation time was less than 15 s. The resultant D-NGel was injected into the articular cavity of collagen-induced arthritis rats and quickly transformed in situ into gels which slowly released drug in the joint fluid for up to 72 h. The D-NGel effectively reduced joint swelling, bone erosion and expression of inflammatory cytokines in the ankle fluid and knee joint fluid. In addition, liver and kidney function tests and histopathological examination indicated there was a good biological safety for D-NGel. In conclusion, this work has demonstrated the great potential of the D-NGel for sustained co-delivery of IND and MTX for the synergistic treatment of rheumatoid arthritis, treating both the symptoms and the root causes of rheumatoid arthritis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9tb01795jDOI Listing
February 2020

In vitro antifungal activity of dimethyl trisulfide against Colletotrichum gloeosporioides from mango.

World J Microbiol Biotechnol 2019 Dec 12;36(1). Epub 2019 Dec 12.

School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.

Colletotrichum gloeosporioides, one of the main agents of mango anthracnose, causes latent infections in unripe mango, and leads to huge economic losses during storage and transport. Dimethyl trisulfide (DMTS), one of the main volatile compounds produced by some microorganisms or plants, has shown antifungal activity against some phytopathogens in previous studies, but its effects on C. gloeosporioides and mechanisms of action have not been well characterized. In fumigation trials of conidia and mycelia of C. gloeosporioides for 2, 4, 6, 8, or 10 h, at a concentration of 100 μL/L of air space in vitro, DMTS caused serious damage to the integrity of plasma membranes, which significantly reduced the survival rate of spores, and resulted in abnormal hyphal morphology. Moreover, DMTS caused deterioration of subcellular structures of conidia and mycelia, such as cell walls, plasma membranes, Golgi bodies, and mitochondria, and contributed to leakage of protoplasm, thus promoting vacuole formation. In addition, to better understand the molecular mechanisms of the antifungal activity, the global gene expression profiles of isolate C. gloeosporioides TD3 treated in vitro with DMTS at a concentration of 100 μL/L of air for 0 h (Control), 1 h, or 3 h were investigated by RNA sequencing (RNA-seq), and over 62 Gb clean reads were generated from nine samples. Similar expressional patterns for nine differentially expressed genes (DEGs) in both RNA-seq and qRT-PCR assays showed the reliability of the RNA-seq data. In comparison to the non-treated control groups, we found DMTS suppressed expression of β-1, 3-D-glucan, chitin, sterol biosynthesis-related genes, and membrane protein-related genes. These genes related to the formation of fungal cell walls and plasma membranes might be associated with the toxicity of DMTS against C. gloeosporioides. This is the first study demonstrating antifungal activity of DMTS against C. gloeosporioides on mango by direct damage of conidia and hyphae, thus providing a novel tool for postharvest control of mango anthracnose.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11274-019-2781-zDOI Listing
December 2019

Colletotrichum species associated with mango in southern China.

Sci Rep 2019 12 11;9(1):18891. Epub 2019 Dec 11.

Environmental Sciences, University of Guelph, Guelph, Ontario, Canada.

Mango (Mangifera indica L.) is an economically significant fruit crop in provinces of southern China including Hainan, Yunnan, Sichuan, Guizhou, Guangdong and Fujian. The objective of this study was to examine the diversity of Colletotrichum species infecting mango cultivars in major growing areas in China, using morphological and molecular techniques together with pathogenicity tests on detached leaves and fruits. Over 200 Colletotrichum isolates were obtained across all mango orchards investigated, and 128 of them were selected for sequencing and analyses of actin (ACT), chitin synthase (CHS-1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), the internal transcribed spacer (ITS) region, β-tubulin (TUB2) genomic regions. Our results showed that the most common fungal isolates associated with mango in southern China involved 13 species: Colletotrichum asianum, C. cliviicola, C. cordylinicola, C. endophytica, C. fructicola, C. gigasporum, C. gloeosporioides, C. karstii, C. liaoningense, C. musae, C. scovillei, C. siamense and C. tropicale. The dominant species were C. asianum and C. siamense each accounting for 30%, and C. fructicola for 25%. Only C. asianum, C. fructicola, C. scovillei and C. siamense have previously been reported on mango, while the other nine Colletotrichum species listed above were first reports associated with mango in China. From this study, five Colletotrichum species, namely C. cordylinicola, C. endophytica, C. gigasporum, C. liaoningense and C. musae were the first report on mango worldwide. Pathogenicity tests revealed that all 13 species caused symptoms on artificially wounded mango fruit and leaves (cv. Tainong). There was no obvious relationship between aggressiveness and the geographic origin of the isolates. These findings will help in mango disease management and future disease resistance breeding.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-019-54809-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6906457PMC
December 2019

Characterization and application of a gall midge resistance gene (Gm6) from Oryza sativa 'Kangwenqingzhan'.

Theor Appl Genet 2020 Feb 19;133(2):579-591. Epub 2019 Nov 19.

Agricultural College, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China.

Key Message: The resistance gene Gm6 was mapped and characterized using near-isogenic and pyramided lines, followed by marker-assisted selection to develop lines with resistance to both gall midge and brown planthopper. The Asian rice gall midge (GM; Orseolia oryzae; Diptera: Cecidomyiidae) is a major destructive pest affecting rice cultivation regions. The characterization of GM-resistance genes and the breeding of resistant varieties are together considered the most efficient strategy for managing this insect. Here, the Gm6 resistance gene derived from the Kangwenqingzhan (KW) variety was found to be located on the long arm of chromosome 4 using the F population of 9311/KW. The region was narrowed to a 90-kb segment flanked by the markers YW91 and YW3-4 using backcrossing populations. Based on no-choice feeding and host choice tests, GM development and growth in near-isogenic lines (NILs) were severely restricted compared to that in the 9311 control. On day 8, the average GM body length was 0.69 mm and 0.56 mm on NILs and 9311, respectively, and the differences were more significant at later time points. However, GM insects exhibited no host preference between NILs and 9311, and there was normal egg hatching on the resistant plants. We developed pyramided lines carrying BPH27, BPH36, and Gm6 by crossing and backcrossing with marker-assisted selection. These lines were similar to the KW parent in terms of agronomic traits while also exhibiting high resistance to brown planthopper (BPH) and GM. The present mapping and characterization of Gm6 will facilitate map-based cloning of this important resistance gene and its application in the breeding of insect-resistant rice varieties.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00122-019-03488-wDOI Listing
February 2020

Development of a biological signal-based evaluator for robot-assisted upper-limb rehabilitation: a pilot study.

Australas Phys Eng Sci Med 2019 Sep 1;42(3):789-801. Epub 2019 Aug 1.

Department of Exercise Sciences, The University of Auckland, Auckland, New Zealand.

Bio-signal based assessment for upper-limb functions is an attractive technology for rehabilitation. In this work, an upper-limb function evaluator is developed based on biological signals, which could be used for selecting different robotic training protocols. Interaction force (IF) and participation level (PL, processed surface electromyography (sEMG) signals) are used as the key bio-signal inputs for the evaluator. Accordingly, a robot-based standardized performance testing (SPT) is developed to measure these key bio-signal data. Moreover, fuzzy logic is used to regulate biological signals, and a rules-based selector is then developed to select different training protocols. To the authors' knowledge, studies focused on biological signal-based evaluator for selecting robotic training protocols, especially for robot-based bilateral rehabilitation, has not yet been reported in literature. The implementation of SPT and fuzzy logic to measure and process key bio-signal data with a rehabilitation robot system is the first of its kind. Five healthy participants were then recruited to test the performance of the SPT, fuzzy logic and evaluator in three different conditions (tasks). The results show: (1) the developed SPT has an ability to measure precise bio-signal data from participants; (2) the utilized fuzzy logic has an ability to process the measured data with the accuracy of 86.7% and 100% for the IF and PL respectively; and (3) the proposed evaluator has an ability to distinguish the intensity of biological signals and thus to select different robotic training protocols. The results from the proposed evaluator, and biological signals measured from healthy people could also be used to standardize the criteria to assess the results of stroke patients later.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13246-019-00783-0DOI Listing
September 2019

Identification of Knee Osteoarthritis Based on Bayesian Network: Pilot Study.

JMIR Med Inform 2019 Jul 18;7(3):e13562. Epub 2019 Jul 18.

College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fujian, China.

Background: Early identification of knee osteoarthritis (OA) can improve treatment outcomes and reduce medical costs. However, there are major limitations among existing classification or prediction models, including abstract data processing and complicated dataset attributes, which hinder their applications in clinical practice.

Objective: The aim of this study was to propose a Bayesian network (BN)-based classification model to classify people with knee OA. The proposed model can be treated as a prescreening tool, which can provide decision support for health professionals.

Methods: The proposed model's structure was based on a 3-level BN structure and then retrained by the Bayesian Search (BS) learning algorithm. The model's parameters were determined by the expectation-maximization algorithm. The used dataset included backgrounds, the target disease, and predictors. The performance of the model was evaluated based on classification accuracy, area under the curve (AUC), specificity, sensitivity, positive predictive value (PPV), and negative predictive value (NPV); it was also compared with other well-known classification models. A test was also performed to explore whether physical fitness tests could improve the performance of the proposed model.

Results: A total of 249 elderly people between the ages of 60 and 80 years, living in the Kongjiang community (Shanghai), were recruited from April to September 2007. A total of 157 instances were adopted as the dataset after data preprocessing. The experimental results showed that the results of the proposed model were higher than, or equal to, the mean scores of other classification models: .754 for accuracy, .78 for AUC, .78 for specificity, and .73 for sensitivity. The proposed model provided .45 for PPV and .92 for NPV at the prevalence of 20%. The proposed model also showed a significant improvement when compared with the traditional BN model: 6.3% increase in accuracy (from .709 to .754), 4.0% increase in AUC (from .75 to .78), 6.8% increase in specificity (from .73 to .78), 5.8% increase in sensitivity (from .69 to .73), 15.4% increase in PPV (from .39 to .45), and 2.2% increase in NPV (from .90 to .92). Furthermore, the test results showed that the performance of the proposed model could be largely enhanced through physical fitness tests in 3 evaluation indices: 10.6% increase in accuracy (from .682 to .754), 16.4% increase in AUC (from .67 to .78), and 30.0% increase in specificity (from .60 to .78).

Conclusions: The proposed model presents a promising method to classify people with knee OA when compared with other classification models and the traditional BN model. It could be implemented in clinical practice as a prescreening tool for knee OA, which would not only improve the quality of health care for elderly people but also reduce overall medical costs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2196/13562DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6670282PMC
July 2019

Identification and Characterization of Colletotrichum Species Associated with Mango Anthracnose in Guangxi, China.

Plant Dis 2018 Jul 25;102(7):1283-1289. Epub 2018 Apr 25.

School of Environmental Sciences, University of Guelph, ON, Canada.

Mango (Mangifera indica) is widely grown across southern China, especially in the provinces of Guangxi, Hainan, Yunnan, Sichuan, and Taiwan. Guangxi itself has over 86,667 ha of mango production. The purpose of this study was to identify Colletotrichum species associated with mango in different parts of Guangxi and examine their pathogenicity on leaves and fruits of mango in vitro. Diseased leaves were collected from 25 mango orchards in different areas of Guangxi province. Sixty-five isolates were obtained from mango leaves with anthracnose symptoms, and these were further characterized based on morphology and DNA sequencing. Twenty-nine isolates from different areas were selected for sequencing and analyses of the internal transcribed spacer region, glyceraldehyde-3-phosphate dehydrogenase, partial actin, β-tubulin, and chitin synthase genomic regions. The most common fungal isolates were these three species: Colletotrichum asianum, C. fructicola, and C. siamense. C. asianum was the most common and widely distributed in Guangxi (51.7%), followed by C. fructicola (37.9%) and C. siamense (10.2%), both found in Tiandong, Tianyang, and Wuming counties. There was no evidence of geographical specialization of the different species. Pathogenicity assays showed that all isolates were pathogenic to mango leaves and fruit (cultivar Tainong). No relationship was found between origin of isolates and their virulence. This is the first description of C. asianum, C. fructicola, and C. siamense as causal agents of mango leaf anthracnose from Guangxi province, China.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-09-17-1516-REDOI Listing
July 2018

Alterations in muscle activation patterns during robot-assisted bilateral training: A pilot study.

Proc Inst Mech Eng H 2019 Feb 14;233(2):219-231. Epub 2018 Dec 14.

2 Department of Exercise Sciences, The University of Auckland, Auckland, New Zealand.

Robot-assisted bilateral training is being developed as a new rehabilitation approach for stroke patients. However, there is still a lack of understanding of muscle functions when performing robot-assisted synchronous movements. The aim of this work is to explore the muscle activation patterns and the voluntary effort of participants during different robot-assisted bilateral training protocols. To this end, 10 healthy participants were recruited to take part in a 60-minute experiment. The experiment included two different bilateral exercises, and each exercise contained four different training protocols. Trajectories of the robots, interaction force and surface electromyogram signals were recorded during training. The results show that the robots do affect the muscle activation patterns during different training protocols and exercises rather than the controller. Specifically, the activity of muscles is reduced in robot-assisted training but is increased in active force involved robot-assisted training when compared to robot-unassisted training. Meanwhile, the voluntary effort of participants can be presented by the adjusted trajectories via the controller. In addition, the results also suggest that the activations for the same muscle groups in the left and right arms are highly correlated with each other in both exercises. Furthermore, the training protocols and methods developed in this work could be further extended in future clinical trials to investigate therapeutic outcomes for patients as well as to better understand bilateral recovery processes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1177/0954411918819115DOI Listing
February 2019

Photoelectrochemical determination of the activity of protein kinase A by using g-CN and CdS quantum dots.

Mikrochim Acta 2018 11 10;185(12):541. Epub 2018 Nov 10.

College of Chemistry and Material Science, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China.

A sensitive and selective photoelectrochemical (PEC) method is described for the detection of protein kinase A (PKA) activity based on the use of graphite-like carbon nitride (g-CN) and the CdS quantum dots (QDs). Firstly, a complex was synthesized from g-CN and gold nanoparticles (AuNPs). It was employed as both the PEC-active material and as a support for immobilization of peptides. The latter were assembled on an ITO electrode modified with g-CN-AuNPs and subsequently phosphorylated by PKA in the presence of adenosine 5'-[γ-thio]triphosphate (ATP-S). Finally, CdS quantum dots (QDs) were introduced on the ITO in order to increase the PEC response of g-CN based on the Cd-S binding between the QDs and thiol groups. Under the optimal conditions and a typical working voltage of -0.3 V, the method has a dynamic range that extends from 0.05 to 50 unit·mL, with a 0.017 unit·mL lower detection limit. The method was successfully applied to the quantification of the inhibitory effect of ellagic acid on the activity of PKA, and to monitor enzyme activity in cell lysates. Graphical abstract Schematic of a sensitive and selective photoelectrochemical biosensor for the detection of protein kinase A activity. It is based on the use of graphite-like carbon nitride and CdS quantum dots.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00604-018-3076-zDOI Listing
November 2018
-->