Publications by authors named "Liangfeng Han"

12 Publications

  • Page 1 of 1

HEYL Regulates Neoangiogenesis Through Overexpression in Both Breast Tumor Epithelium and Endothelium.

Front Oncol 2020 15;10:581459. Epub 2021 Jan 15.

Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.

Blocking tumor angiogenesis is an appealing therapeutic strategy, but to date, success has been elusive. We previously identified HEYL, a downstream target of Notch signaling, as an overexpressed gene in both breast cancer cells and as a tumor endothelial marker, suggesting that HEYL overexpression in both compartments may contribute to neoangiogenesis. Carcinomas arising in double transgenic Her2-neu/HeyL mice showed higher tumor vessel density and significantly faster growth than tumors in parental Her2/neu mice. Providing mechanistic insight, microarray-based mRNA profiling of HS578T-tet-off-HEYL human breast cancer cells revealed upregulation of several angiogenic factors including CXCL1/2/3 upon HEYL expression, which was validated by RT-qPCR and protein array analysis. Upregulation of the cytokines CXCL1/2/3 occurred through direct binding of HEYL to their promoter sequences. We found that vessel growth and migration of human vascular endothelial cells (HUVECs) was promoted by conditioned medium from HS578T-tet-off-HEYL carcinoma cells, but was blocked by neutralizing antibodies against CXCL1/2/3. Supporting these findings, suppressing HEYL expression using shRNA in MDA-MB-231 cells significantly reduced tumor growth. In addition, suppressing the action of proangiogenic cytokines induced by HEYL using a small molecule inhibitor of the CXCl1/2/3 receptor, CXCR2, in combination with the anti-VEGF monoclonal antibody, bevacizumab, significantly reduced tumor growth of MDA-MB-231 xenografts. Thus, HEYL expression in tumor epithelium has a profound effect on the vascular microenvironment in promoting neoangiogenesis. Furthermore, we show that lack of HEYL expression in endothelial cells leads to defects in neoangiogenesis, both under normal physiological conditions and in cancer. Thus, HeyL-/- mice showed impaired vessel outgrowth in the neonatal retina, while the growth of mammary tumor cells E0771 was retarded in syngeneic HeyL-/- mice compared to wild type C57/Bl6 mice. Blocking HEYL's angiogenesis-promoting function in both tumor cells and tumor-associated endothelium may enhance efficacy of therapy targeting the tumor vasculature in breast cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fonc.2020.581459DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7845423PMC
January 2021

Effective treatment of ductal carcinoma in situ with a HER-2- targeted alpha-particle emitting radionuclide in a preclinical model of human breast cancer.

Oncotarget 2016 May;7(22):33306-15

Department of Oncology, Johns Hopkins University School of Medicine, Maryland, USA.

The standard treatment for ductal carcinoma in situ (DCIS) of the breast is surgical resection, followed by radiation. Here, we tested localized therapy of DCIS in mice using the immunoconjugate 225Ac linked-trastuzumab delivered through the intraductal (i.duc) route. Trastuzumab targets HER-2/neu, while the alpha-emitter 225Ac (half-life, 10 days) delivers highly cytotoxic, focused doses of radiation to tumors. Systemic 225Ac, however, elicits hematologic toxicity and at high doses free 213Bi, generated by its decay, causes renal toxicity. I.duc delivery of the radioimmunoconjugate could bypass its systemic toxicity. Bioluminescent imaging showed that the therapeutic efficacy of intraductal 225Ac-trastuzumab (10-40 nCi per mammary gland; 30-120 nCi per mouse) in a DCIS model of human SUM225 cancer cells in NSG mice was significantly higher (p<0.0003) than intravenous (120 nCi per mouse) administration, with no kidney toxicity or loss of body weight. Our findings suggest that i.duc radioimmunotherapy using 225Ac-trastuzumab deserves greater attention for future clinical development as a treatment modality for early breast cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.18632/oncotarget.8949DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5078096PMC
May 2016

Combined Treatment with Epigenetic, Differentiating, and Chemotherapeutic Agents Cooperatively Targets Tumor-Initiating Cells in Triple-Negative Breast Cancer.

Cancer Res 2016 04 19;76(7):2013-2024. Epub 2016 Jan 19.

Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Efforts to induce the differentiation of cancer stem cells through treatment with all-trans retinoic acid (ATRA) have yielded limited success, partially due to the epigenetic silencing of the retinoic acid receptor (RAR)-β The histone deacetylase inhibitor entinostat is emerging as a promising antitumor agent when added to the standard-of-care treatment for breast cancer. However, the combination of epigenetic, cellular differentiation, and chemotherapeutic approaches against triple-negative breast cancer (TNBC) has not been investigated. In this study, we found that combined treatment of TNBC xenografts with entinostat, ATRA, and doxorubicin (EAD) resulted in significant tumor regression and restoration of epigenetically silenced RAR-β expression. Entinostat and doxorubicin treatment inhibited topoisomerase II-β (TopoII-β) and relieved TopoII-β-mediated transcriptional silencing of RAR-β Notably, EAD was the most effective combination in inducing differentiation of breast tumor-initiating cells in vivo Furthermore, gene expression analysis revealed that the epithelium-specific ETS transcription factor-1 (ESE-1 or ELF3), known to regulate proliferation and differentiation, enhanced cell differentiation in response to EAD triple therapy. Finally, we demonstrate that patient-derived metastatic cells also responded to treatment with EAD. Collectively, our findings strongly suggest that entinostat potentiates doxorubicin-mediated cytotoxicity and retinoid-driven differentiation to achieve significant tumor regression in TNBC. Cancer Res; 76(7); 2013-24. ©2016 AACR.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-15-1619DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4873448PMC
April 2016

Targeting Glutamine Metabolism in Breast Cancer with Aminooxyacetate.

Clin Cancer Res 2015 Jul 26;21(14):3263-73. Epub 2015 Mar 26.

Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.

Purpose: Glutamine addiction in c-MYC-overexpressing breast cancer is targeted by the aminotransferase inhibitor, aminooxyacetate (AOA). However, the mechanism of ensuing cell death remains unresolved.

Experimental Design: A correlation between glutamine dependence for growth and c-MYC expression was studied in breast cancer cell lines. The cytotoxic effects of AOA, its correlation with high c-MYC expression, and effects on enzymes in the glutaminolytic pathway were investigated. AOA-induced cell death was assessed by measuring changes in metabolite levels by magnetic resonance spectroscopy (MRS), the effects of amino acid depletion on nucleotide synthesis by cell-cycle and bromodeoxyuridine (BrdUrd) uptake analysis, and activation of the endoplasmic reticulum (ER) stress-mediated pathway. Antitumor effects of AOA with or without common chemotherapies were determined in breast cancer xenografts in immunodeficient mice and in a transgenic MMTV-rTtA-TetO-myc mouse mammary tumor model.

Results: We established a direct correlation between c-MYC overexpression, suppression of glutaminolysis, and AOA sensitivity in most breast cancer cells. MRS, cell-cycle analysis, and BrdUrd uptake measurements indicated depletion of aspartic acid and alanine leading to cell-cycle arrest at S-phase by AOA. Activation of components of the ER stress-mediated pathway, initiated through GRP78, led to apoptotic cell death. AOA inhibited growth of SUM159, SUM149, and MCF-7 xenografts and c-myc-overexpressing transgenic mouse mammary tumors. In MDA-MB-231, AOA was effective only in combination with chemotherapy.

Conclusions: AOA mediates its cytotoxic effects largely through the stress response pathway. The preclinical data of AOA's effectiveness provide a strong rationale for further clinical development, particularly for c-MYC-overexpressing breast cancers.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-14-1200DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4696069PMC
July 2015

The Notch pathway inhibits TGFβ signaling in breast cancer through HEYL-mediated crosstalk.

Cancer Res 2014 Nov 12;74(22):6509-18. Epub 2014 Sep 12.

Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.

Acquired resistance to TGFβ is a key step in the early stages of tumorigenesis. Mutations in TGFβ signaling components are rare, and little is known about the development of resistance in breast cancer. On the other hand, an activated Notch pathway is known to play a substantial role in promoting breast cancer development. Here, we present evidence of crosstalk between these two pathways through HEYL. HEYL, a basic helix-loop-helix transcription factor and a direct target of Notch signaling, is specifically overexpressed in breast cancer. HEYL represses TGFβ activity by binding to TGFβ-activated Smads. HeyL(-/-) mice have defective mammary gland development with fewer terminal end buds. On the other hand, HeyL transgenic mice show accelerated mammary gland epithelial proliferation and 24% of multiparous mice develop mammary gland cancer. Therefore, repression of TGFβ signaling by Notch acting through HEYL may promote initiation of breast cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-14-0816DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4233182PMC
November 2014

ADP ribosylation by PARP-1 suppresses HOXB7 transcriptional activity.

PLoS One 2012 23;7(7):e40644. Epub 2012 Jul 23.

Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America.

Interactions with cofactors regulate transcriptional activity and also help HOX proteins to achieve the specificity required for transcriptional regulation of target genes. In this study, we describe a novel protein/protein interaction of HOXB7 with poly (ADP-ribose) polymerase-1 (PARP-1) that involves the homeodomain of HOXB7 and the first zinc finger domain of PARP-1. Upon binding to PARP-1, HOXB7 undergoes poly(ADP-ribosyl)altion resulting in a reduction of its transcriptional activity. Since aspartic acid and glutamic acid residues are acceptors of the ADP ribose moiety transferred by PARP-1, deletion of the evolutionarily conserved C-terminal Glu-rich tail of HOXB7 dramatically attenuates ADP-ribosylation of HOXB7 by PARP-1. Further, a mutant of HOXB7 without the Glu-rich tail loses the ability to be negatively regulated by PARP-1 and becomes transcriptionally more active in luciferase reporter assays. Since the homeodomain is highly conserved among HOX proteins, five other HOX proteins were tested. All six showed interaction with, and were poly(ADP-ribosyl)ated by PARP-1. However, among them, this modification altered the DNA binding activity of only HOXA7 and HOXB7. In summary, this study identifies a new interacting partner of HOX proteins. More importantly, this study reveals a novel mechanism whereby polyADP-ribosylation regulates transcriptional activities of HOX proteins such as HOXB7 and HOXA7.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0040644PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3402478PMC
November 2012

A new perspective on Estrogen Receptor beta in breast cancer progression.

Authors:
Liangfeng Han

Cancer Biol Ther 2011 Apr 1;11(7):644-6. Epub 2011 Apr 1.

Department of Oncology, Breast Cancer Program, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University Baltimore, MD USA.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4161/cbt.11.7.14983DOI Listing
April 2011

Epigenetic inactivation of the potential tumor suppressor gene FOXF1 in breast cancer.

Cancer Res 2010 Jul 29;70(14):6047-58. Epub 2010 Jun 29.

Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

The expression of several members of the FOX gene family is known to be altered in a variety of cancers. We show that in breast cancer, FOXF1 gene is a target of epigenetic inactivation and that its gene product exhibits tumor-suppressive properties. Loss or downregulation of FOXF1 expression is associated with FOXF1 promoter hypermethylation in breast cancer cell lines and in invasive ductal carcinomas. Methylation of FOXF1 in invasive ductal carcinoma (37.6% of 117 cases) correlated with high tumor grade. Pharmacologic unmasking of epigenetic silencing in breast cancer cells restored FOXF1 expression. Re-expression of FOXF1 in breast cancer cells with epigenetically silenced FOXF1 genes led to G(1) arrest concurrent with or without apoptosis to suppress both in vitro cell growth and in vivo tumor formation. FOXF1-induced G(1) arrest resulted from a blockage at G(1)-S transition of the cell cycle through inhibition of the CDK2-RB-E2F cascade. Small interfering RNA-mediated depletion of FOXF1 in breast cancer cells led to increased DNA re-replication, suggesting that FOXF1 is required for maintaining the stringency of DNA replication and genomic stability. Furthermore, expression profiling of cell cycle regulatory genes showed that abrogation of FOXF1 function resulted in increased expression of E2F-induced genes involved in promoting the progression of S and G(2) phases. Therefore, our studies have identified FOXF1 as a potential tumor suppressor gene that is epigenetically silenced in breast cancer, which plays an essential role in regulating cell cycle progression to maintain genomic stability.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-10-1576DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2909657PMC
July 2010

DNA methylation regulates MicroRNA expression.

Cancer Biol Ther 2007 Aug 24;6(8):1284-8. Epub 2007 May 24.

Predoctoral Training Program in Human Genetics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

MicroRNAs (miRNAs), an important class of small regulatory molecules for gene expression, are transcribed by RNA polymerase II. But little is known about the mechanisms that control miRNA expression. Comparing miRNA expression profiles between colon cancer cell line HCT 116 and its derivative, DNA methyltransferase 1 and 3b (DNMT1 and DNMT3b) double knockout cell line, we found that the expression of about 10% miRNAs was regulated by DNA methylation. In addition, neither 5-aza-2'-deoxycytidine treatment nor deletion of DNMT1 alone recapitulated miRNA expression profile seen in the double knockout cell line, suggesting that miRNA expression was tightly controlled by DNA methylation and partial methylation reduction was not sufficient for miRNA reexpression. We also found that HOXA3 and HOXD10 were putative targets of mir-10a, one of the differentially expressed miRNAs that is located in HOX gene cluster.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4161/cbt.6.8.4486DOI Listing
August 2007

Residence times and age distributions of spring waters at the Semmering catchment area, Eastern Austria, as inferred from tritium, CFCs and stable isotopes.

Isotopes Environ Health Stud 2007 Mar;43(1):31-50

Isotope Hydrology Unit, PCI Laboratory, Agency's Laboratories Seibersdorf, International Atomic Energy Agency. P.O. Box 100, Vienna, 1400. Austria.

The groundwater system in the mountainous area of Semmering, Austria, was studied by environmental tracers in several karst springs. The tracers used included stable isotopes ((18)O, (2)H), tritium ((3)H) and chlorofluorocarbons (CFCs). The tracers provided valuable information in regard to (1) the mean altitude of the spring catchment areas; (2) the residence time and age distribution of the spring waters; and (3) the interconnection of the springs to a sinkhole. The combination of the stable isotopic data and the topography/geology provided the estimates of the mean altitudes of the catchment areas. Based on the stable isotopic data the recharge temperature of the spring waters was estimated. The smoothing of precipitation's isotopic signal in spring discharge provided information on the minimum transit time of the spring waters. Due to short observation time, (3)H data alone cannot be used for describing the mean residence time of the karst waters. CFCs, though useful in recognizing the co-existence of young (post-1993) water with old (CFC-free) water, could not be used to resolve age distribution models. It is shown in this article, however, that the combined use of tritium and CFCs can provide a better assessment of models to account for different groundwater age distributions. In Appendix A, a simplified method for collecting groundwater samples for the analysis of CFCs is described. The method provides a real facilitation for fieldwork. Test data are given for this sampling method in regard to potential contamination by atmospheric CFCs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/10256010601154015DOI Listing
March 2007

Alterations in vascular gene expression in invasive breast carcinoma.

Cancer Res 2004 Nov;64(21):7857-66

Breast Cancer Program, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

The molecular signature that defines tumor microvasculature will likely provide clues as to how vascular-dependent tumor proliferation is regulated. Using purified endothelial cells, we generated a database of gene expression changes accompanying vascular proliferation in invasive breast cancer. In contrast to normal mammary vasculature, invasive breast cancer vasculature expresses extracellular matrix and surface proteins characteristic of proliferating and migrating endothelial cells. We define and validate the up-regulated expression of VE-cadherin and osteonectin in breast tumor vasculature. In contrast to other tumor types, invasive breast cancer vasculature induced a high expression level of specific transcription factors, including SNAIL1 and HEYL, that may drive gene expression changes necessary for breast tumor neovascularization. We demonstrate the expression of HEYL in tumor endothelial cells and additionally establish the ability of HEYL to both induce proliferation and attenuate programmed cell death of primary endothelial cells in vitro. We also establish that an additional intracellular protein and previously defined metastasis-associated gene, PRL3, appears to be expressed predominately in the vasculature of invasive breast cancers and is able to enhance the migration of endothelial cells in vitro. Together, our results provide unique insights into vascular regulation in breast tumors and suggest specific roles for genes in driving tumor angiogenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-04-1976DOI Listing
November 2004

[Blood lead level of children in the urban areas in China].

Zhonghua Liu Xing Bing Xue Za Zhi 2002 Jun;23(3):162-6

Department of Biological Monitoring, Institute for Environment Hygiene and Health Related Product Sefety, Chinese Center for Disease Control and Prevention, Beijing 100021, China.

Objective: The purpose of this study was to investigate the blood lead level of 3 - 5 year old children living in the cities in China and to provide scientific data for making policy on environmental lead pollution for children health protection.

Methods: Six thousand five hundred and two vein blood samples from 3 - 5 year old children in nineteen cities of nine provinces were sampled. Inductively coupled plasma-mass spectrometry (ICP-MS) were employed to determine lead level in whole blood after microwave digestion for sample preparation and questionnaire survey was also performed. Data were analyzed with multiple regression on factors which affecting blood lead levels.

Results: Results showed that mean blood lead level was 88.3 micro g/L for 3 - 5 year old children living in the cities in China and mean blood lead level of boys (91.1 micro g/L) was higher than that of girls (87.3 micro g/L). Twenty-nine point nine one per cent of the children's blood lead level exceeded 100 micro g/L. The research finding showed: (1) higher blood lead levels had negative effects on children's physical growth, language ability etc. (2) behavior of parents had certain effects on children's blood lead levels. (3) blood lead levels of children were affected by unhealthy habits.

Conclusions: Problem of childhood lead poisoning in China has become more serious. During the past ten years, blood lead levels of children has been increased in China while decreasing in developed countries. Blood lead levels of children in China are higher than that of developed countries, which called for special concern by government and society.
View Article and Find Full Text PDF

Download full-text PDF

Source
June 2002