Publications by authors named "Liang-zuo Shu"

4 Publications

  • Page 1 of 1

[Effects of different nitrogen application rates on dry matter accumulation, distribution and yield of grape under alternate partial root-zone drip irrigation.]

Ying Yong Sheng Tai Xue Bao 2021 May;32(5):1807-1815

School of Life Science, Taizhou University, Taizhou 318000, Zhejiang, China.

To get an optimal mode of irrigation and nitrogen supply for table grape production in North China, a pot experiment was conducted to investigate the effects of different irrigation modes and N application rates on dry matter accumulation and distribution, yield, water use efficiency, and nitrogen use efficiency of table grape. The irrigation modes included conventional drip irrigation (CDI, with sufficient irrigation), alternate partial root-zone drip irrigation (ADI, with 50% amount of the irrigation water of CDI) and fixed partial root-zone drip irrigation (FDI, with 50% amount of the irrigation water of CDI). The nitrogen application rates were set at 0.4 (N), 0.8 (N) and 1.2 (N) g·kg dry soil. The results showed that compared with CDI, ADI and FDI reduced new shoot pruning amount by 34.8% and 11.2%, respectively. New shoot pruning amount increased with increasing N application rates, being highest under CDIN. Dry matter accumulation of ADI was the highest, being 5.1% and 12.8% higher than CDI and FDI. Dry matter accumulation was higher under N and N than N. Compared with CDI and FDI, leaf to fruit ratio reduced but harvest index significantly increased in ADI, while those variables showed no significant difference among diffe-rent N application rates. The ratio of pruning amount to the biomass accumulated in the current year in ADIN was the lowest among the treatments. Compared with CDI and FDI, ADI increased grape fruit yield by 6.0% and 10.4%, respectively. Fruit yield was enhanced with increasing nitrogen application rates under the same irrigation condition, with the highest yield under the ADIN and ADIN. Water use efficiency (WUE) increased significantly in ADI compared with CDI and FDI, with the highest value being observed in ADI coupled with N or N. Nitrogen use efficiency (NUE) showed a trend of ADI>CDI>FDI. In addition, NUE decreased with increasing nitrogen supply level across the irrigation modes. In conclusion, ADIN could reduce the redundant growth of grape tree, promote the transfer of dry matter to fruit, which increased yield and use efficiency of both water and nitrogen, which is a suitable coupling water and nitrogen supply mode for grape production in northern China.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.13287/j.1001-9332.202105.023DOI Listing
May 2021

[Effects of biochar application on the abundance and structure of ammonia-oxidizer communities in coal-mining area.]

Ying Yong Sheng Tai Xue Bao 2017 Oct;28(10):3417-3423

Anhui Province Key Labrotory of Resource and Plant Biology, College of Life Science, Huaibei Normal University, Huaibei 235000, Anhui, China.

As a new type of soil amendment, biochar can effectively improve soil fertility, structure and soil nitrogen transformation. We studied the effects of biochar application on soil properties, abundance and community structure of ammonia oxidizer in coal-mining area. The results showed that the biochar application significantly increased contents of soil NH4+-N, total nitrogen, available phosphorus and potassium. Compared with the control, no change in the abundance of ammonia-oxidizing archaea (AOA) was found under biochar treatment, but there was a significant increase in the abundance of ammonia-oxidizing bacteria (AOB). The analysis of T-RFLP profiles showed that biochar significantly increased the diversity indexes of AOA and AOB, and altered the community structure of both AOA and AOB. Improved soil nutrients as well as increased abundance and diversity of ammonia-oxidizing community to some extent indicated the potential of biochar application in reclamation of coal-mining area soil.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.13287/j.1001-9332.201710.034DOI Listing
October 2017

[Effects of nitrogen forms on the growth, yield and fruit quality of tomato under controlled alternate partial root zone irrigation].

Ying Yong Sheng Tai Xue Bao 2014 Dec;25(12):3547-55

The effects of nitrogen (N) forms (ammonium-N and nitrate-N) on the growth, yield and fruit quality of tomato plants (cv. Zhongyan 988) under controlled alternate partial root zone irrigation (APRI) were examined in a split-root experiment. Under the same irrigation mode and/or controlled soil water limitation treatment, ammonium-N promoted plant growth at the early stage, while nitrate-N improved plant growth and development at the later stage leading to higher biomass accumulation and fruit yield at harvest. Under APRI and the same soil water conditions, plants of the nitrate-N treatment improved the content of vitamin C and the ratio of soluble sugar to organic acid and thus facilitated fruit quality when compared with those of the ammonium-N treatment. Plant height and leaf area under APRI treatment were lower compared with conventional irrigation (CK) under the same N form, but the stem diameter under APRI treatment with 60% theta(f) (field water capacity, theta(f)) soil moisture showed a slight increase at the late growth stage. Under the same N form, fruit yield was significantly lower in APRI treatment than that of the CK. Compared with the CK, fruit yield decreased by 22.4%-26.3% under the APRI treatment with 40% theta(f) soil moisture. Under 60% theta(f) soil moisture, the APRI treatment significantly improved fruit quality and water-use efficiency compared with the CK regardless small reduction (5.3%-5.4%) in fruit yield. The experimental results suggested that the APRI treatment with the lower limitation of soil moisture controlled at 60% theta(f), and nitrate-N supply would be the optimal option in terms of sustainable use of water resource and fertilizer.
View Article and Find Full Text PDF

Download full-text PDF

Source
December 2014

[Effects of nitrogen form and its supply position on maize seedling growth under partial root-zone water stress].

Ying Yong Sheng Tai Xue Bao 2010 Aug;21(8):2017-24

School of Life Science, Huaibei Normal University, Huaibei 235000, Anhui, China.

A split root system consisting of two compartments was installed to study the effects of nitrogen form and its supply position on the growth of maize seedlings under partial root-zone water stress. Polyethylene glycol (PEG 6000) was added to the nutrient solution in one compartment to simulate partial root-zone water stress, while nitrogen was set as three forms (nitrate nitrogen, ammonium nitrogen, and their 1 : 1 mixture) and supplied to just one compartment (water-stressed or non-water-stressed compartment). Photosynthetic and other physiological indices were examined. Comparing with the nitrogen supplied to water-stressed compartment, the nitrogen supplied to non-water-stressed compartment improved the photosynthetic rate (P(n)), maximum net photosynthetic rate (P(max)), light saturation point (LSP), CO2 saturation point (CSP), chlorophyll content, root activity, nitrogen uptake, and biomass accumulation, but reduced the photorespiration rate (R(p)), CO2 compensation point (CCP), abscisic acid (ABA) concentration in xylem sap, and nitrogen- and water use efficiency of the plants. Supplying nitrate nitrogen or its mixture with ammonium nitrogen improved the P(n), P(max), LSP, CSP, nitrogen uptake, and biomass accumulation, but reduced the CCP, R(p), ABA concentration in xylem sap, and nitrogen- and water use efficiency of the plants, compared with supplying ammonium nitrogen. All the results showed that supplying same nitrogen forms to non-water-stressed compartment was more beneficial to the plant growth but disadvantageous to the plant nitrogen- and water use, compared with supplying the nitrogen forms to water-stressed compartment, and supplying nitrate nitrogen or its mixture with ammonium nitrogen promoted the plant growth but reduced the plant nitrogen- and water use, compared with supplying ammonium nitrogen.
View Article and Find Full Text PDF

Download full-text PDF

Source
August 2010
-->