Publications by authors named "Lech Ignatowicz"

10 Publications

  • Page 1 of 1

Peptide-coated polyurethane material reduces wound infection and inflammation.

Acta Biomater 2021 May 2. Epub 2021 May 2.

Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Lund, SE 22184, Sweden. Electronic address:

There is an urgent need for treatments that not only reduce bacterial infection that occurs during wounding but that also target the accompanying excessive inflammatory response. TCP-25, a thrombin-derived antibacterial peptide, scavenges toll-like receptor agonists such as endotoxins and lipoteichoic acid and prevents toll-like receptor-4 dimerization to reduce infection-related inflammation in vivo. Using a combination of biophysical, cellular, and microbiological assays followed by experimental studies in mouse and pig models, we show that TCP-25, when delivered from a polyurethane (PU) material, exerts anti-infective and anti-inflammatory effects in vitro and in vivo. Specifically, TCP-25 killed the common wound pathogens, Pseudomonas aeruginosa and Staphylococcus aureus, in both in vitro and in vivo assays. Furthermore, after its release from the PU material, the peptide retained its capacity to induce its helical conformation upon endotoxin interaction, yielding reduced activation of NF-κB in THP-1 reporter cells, and diminished accumulation of inflammatory cells and subsequent release of IL-6 and TNF-α in subcutaneous implant models in vivo. Moreover, in a porcine partial thickness wound infection model, TCP-25 treated infection with S. aureus, and reduced the concomitant inflammatory response. Taken together, these findings demonstrate a combined antibacterial and anti-inflammatory effect of TCP-25 delivered from PU in vitro, and in mouse and porcine in vivo models of localized infection-inflammation. STATEMENT OF SIGNIFICANCE: Local wound infections may result in systemic complications and can be difficult to treat due to increasing antimicrobial resistance. Surgical site infections and biomaterial-related infections present a major challenge for hospitals. In recent years, various antimicrobial coatings have been developed for infection prevention and current concepts focus on various matrices with added anti-infective components, including various antibiotics and antiseptics. We have developed a dual action wound dressing concept where the host defense peptide TCP-25, when delivered from a PU material, targets both bacterial infection and the accompanying inflammation. TCP-25 PU showed efficacy in in vitro and experimental wound models in mouse and minipigs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2021.04.045DOI Listing
May 2021

Cryopreserved or Fresh Mesenchymal Stromal Cells: Only a Matter of Taste or Key to Unleash the Full Clinical Potential of MSC Therapy?

Adv Exp Med Biol 2016 ;951:77-98

Therapeutic Immunology (TIM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.

Mesenchymal stromal cells (MSCs) harbor great therapeutic potential for numerous diseases. From early clinical trials, success and failure analysis, bench-to-bedside and back-to-bench approaches, there has been a great gain in knowledge, still leaving a number of questions to be answered regarding optimal manufacturing and quality of MSCs for clinical application. For treatment of many acute indications, cryobanking may remain a prerequisite, but great uncertainty exists considering the therapeutic value of freshly thawed (thawed) and continuously cultured (fresh) MSCs. The field has seen an explosion of new literature lately, outlining the relevance of the topic. MSCs appear to have compromised immunomodulatory activity directly after thawing for clinical application. This may provide a possible explanation for failure of early clinical trials. It is not clear if and how quickly MSCs recover their full therapeutic activity, and if the "cryo stun effect" is relevant for clinical success. Here, we will share our latest insights into the relevance of these observations for clinical practice that will be discussed in the context of the published literature. We argue that the differences of fresh and thawed MSCs are limited but significant. A key issue in evaluating potency differences is the time point of analysis after thawing. To date, prospective double-blinded randomized clinical studies to evaluate potency of both products are lacking, although recent progress was made with preclinical assessment. We suggest refocusing therapeutic MSC development on potency and safety assays with close resemblance of the clinical reality.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-319-45457-3_7DOI Listing
September 2017

Effects of Freeze-Thawing and Intravenous Infusion on Mesenchymal Stromal Cell Gene Expression.

Stem Cells Dev 2016 Apr 30;25(8):586-97. Epub 2016 Mar 30.

1 Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center , Rotterdam, the Netherlands .

Mesenchymal stromal cells (MSC) are increasingly used as an investigative therapeutic product for immune disorders and degenerative disease. Typically, MSC are isolated from human tissue, expanded in culture, and cryopreserved until usage. The safety and efficacy of MSC therapy will depend on the phenotypical and functional characteristics of MSC. The freeze-thawing procedure may change these characteristics. Furthermore, the cells encounter a microenvironment after administration that may impact their properties. It has been demonstrated that the majority of MSC localize to the lungs after intravenous infusion, making this the site to study the effects of the in vivo milieu on administered MSC. In this study, we investigated the effect of freeze-thawing and the mouse lung microenvironment on human adipose tissue-derived MSC. There were effects of freeze-thawing on the whole genome expression profile of MSC, although the effects did not exceed interdonor differences. There were no major changes in the expression of hemostatic regulators on transcriptional level, but significantly increased expression of procoagulant tissue factor on the surface of thawed adipose MSC, correlating with increased procoagulant activity of thawed cells. Exposure for 2 h to the lung microenvironment had a major effect on MSC gene expression and affected several immunological pathways. This indicates that MSC undergo functional changes shortly after infusion and this may influence the efficacy of MSC to modulate inflammatory responses. The results of this study demonstrate that MSC rapidly alter in response to the local milieu and disease-specific conditions may shape MSC after administration.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1089/scd.2015.0329DOI Listing
April 2016

Different Procoagulant Activity of Therapeutic Mesenchymal Stromal Cells Derived from Bone Marrow and Placental Decidua.

Stem Cells Dev 2015 Oct 24;24(19):2269-79. Epub 2015 Aug 24.

1 Therapeutic Immunology (TIM), Department of Laboratory Medicine, Karolinska Institutet , Stockholm, Sweden .

While therapeutic mesenchymal stromal/stem cells (MSCs) have usually been obtained from bone marrow, perinatal tissues have emerged as promising new sources of cells for stromal cell therapy. In this study, we present a first safety follow-up on our clinical experience with placenta-derived decidual stromal cells (DSCs), used as supportive immunomodulatory and regenerative therapy for patients with severe complications after allogeneic hematopoietic stem cell transplantation (HSCT). We found that DSCs are smaller, almost half the volume of MSCs, which may favor microvascular passage. DSCs also show different hemocompatibility, with increased triggering of the clotting cascade after exposure to human blood and plasma in vitro. After infusion of DSCs in HSCT patients, we observed a weak activation of the fibrinolytic system, but the other blood activation markers remained stable, excluding major adverse events. Expression profiling identified differential levels of key factors implicated in regulation of hemostasis, such as a lack of prostacyclin synthase and increased tissue factor expression in DSCs, suggesting that these cells have intrinsic blood-activating properties. The stronger triggering of the clotting cascade by DSCs could be antagonized by optimizing the cell graft reconstitution before infusion, for example, by use of low-dose heparin anticoagulant in the cell infusion buffer. We conclude that DSCs are smaller and have stronger hemostatic properties than MSCs, thus triggering stronger activation of the clotting system, which can be antagonized by optimizing the cell graft preparation before infusion. Our results highlight the importance of hemocompatibility safety testing for every novel cell therapy product before clinical use, when applied using systemic delivery.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1089/scd.2015.0120DOI Listing
October 2015

Do cryopreserved mesenchymal stromal cells display impaired immunomodulatory and therapeutic properties?

Stem Cells 2014 Sep;32(9):2430-42

Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Hematology and Regenerative Medicine Centre at Karolinska University Hospital Huddinge, Stockholm, Sweden.

We have recently reported that therapeutic mesenchymal stromal cells (MSCs) have low engraftment and trigger the instant blood mediated inflammatory reaction (IBMIR) after systemic delivery to patients, resulting in compromised cell function. In order to optimize the product, we compared the immunomodulatory, blood regulatory, and therapeutic properties of freeze-thawed and freshly harvested cells. We found that freeze-thawed MSCs, as opposed to cells harvested from continuous cultures, have impaired immunomodulatory and blood regulatory properties. Freeze-thawed MSCs demonstrated reduced responsiveness to proinflammatory stimuli, an impaired production of anti-inflammatory mediators, increased triggering of the IBMIR, and a strong activation of the complement cascade compared to fresh cells. This resulted in twice the efficiency in lysis of thawed MSCs after 1 hour of serum exposure. We found a 50% and 80% reduction in viable cells with freshly detached as opposed to thawed in vitro cells, indicating a small benefit for fresh cells. In evaluation of clinical response, we report a trend that fresh cells, and cells of low passage, demonstrate improved clinical outcome. Patients treated with freshly harvested cells in low passage had a 100% response rate, twice the response rate of 50% observed in a comparable group of patients treated with freeze-thawed cells at higher passage. We conclude that cryobanked MSCs have reduced immunomodulatory and blood regulatory properties directly after thawing, resulting in faster complement-mediated elimination after blood exposure. These changes seem to be paired by differences in therapeutic efficacy in treatment of immune ailments after hematopoietic stem cell transplantation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/stem.1729DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4381870PMC
September 2014

Divergent effects of mycobacterial cell wall glycolipids on maturation and function of human monocyte-derived dendritic cells.

PLoS One 2012 3;7(8):e42515. Epub 2012 Aug 3.

Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.

Background: Mycobacterium tuberculosis (Mtb) is able to evade the immune defenses and may persist for years, decades and even lifelong in the infected host. Mtb cell wall components may contribute to such persistence by modulating several pivotal types of immune cells. Dendritic cells (DCs) are the most potent antigen-presenting cells and hence play a crucial role in the initial immune response to infections by connecting the innate with the adaptive immune system.

Principal Findings: We investigated the effects of two of the major mycobacterial cell wall-associated types of glycolipids, mannose-capped lipoarabinomannan (ManLAM) and phosphatidylinositol mannosides (PIMs) purified from the Mtb strains H37Rv and Mycobacterium bovis, on the maturation and cytokine profiles of immature human monocyte-derived DCs. ManLAM from Mtb H37Rv stimulated the release of pro-inflammatory cytokines TNF, IL-12, and IL-6 and expression of co-stimulatory (CD80, CD86) and antigen-presenting molecules (MHC class II). ManLAM from M. bovis also induced TNF, IL-12 and IL-6 but at significantly lower levels. Importantly, while ManLAM was found to augment LPS-induced DC maturation and pro-inflammatory cytokine production, addition of PIMs from both Mtb H37Rv and M. bovis strongly reduced this stimulatory effect.

Conclusions: These results indicate that the mycobacterial cell wall contains macromolecules of glycolipid nature which are able to induce strong and divergent effects on human DCs; i.e while ManLAM is immune-stimulatory, PIMs act as powerful inhibitors of DC cytokine responses. Thus PIMs may be important Mtb-associated virulence factors contributing to the pathogenesis of tuberculosis disease. These findings may also aid in the understanding of some earlier conflicting reports on the immunomodulatory effects exerted by different ManLAM preparations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0042515PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3411746PMC
January 2013

Mycobacterium tuberculosis infection interferes with HIV vaccination in mice.

PLoS One 2012 23;7(7):e41205. Epub 2012 Jul 23.

Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.

Tuberculosis (TB) has emerged as the most prominent bacterial disease found in human immunodeficiency virus (HIV)-positive individuals worldwide. Due to high prevalence of asymptomatic Mycobacterium tuberculosis (Mtb) infections, the future HIV vaccine in areas highly endemic for TB will often be administrated to individuals with an ongoing Mtb infection. The impact of concurrent Mtb infection on the immunogenicity of a HIV vaccine candidate, MultiHIV DNA/protein, was investigated in mice. We found that, depending on the vaccination route, mice infected with Mtb before the administration of the HIV vaccine showed impairment in both the magnitude and the quality of antibody and T cell responses to the vaccine components p24Gag and gp160Env. Mice infected with Mtb prior to intranasal HIV vaccination exhibited reduced p24Gag-specific serum IgG and IgA, and suppressed gp160Env-specific serum IgG as compared to respective titers in uninfected HIV-vaccinated controls. Importantly, in Mtb-infected mice that were HIV-vaccinated by the intramuscular route the virus neutralizing activity in serum was significantly decreased, relative to uninfected counterparts. In addition mice concurrently infected with Mtb had fewer p24Gag-specific IFN-γ-expressing T cells and multifunctional T cells in their spleens. These results suggest that Mtb infection might interfere with the outcome of prospective HIV vaccination in humans.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0041205PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3406616PMC
March 2013

Mycobacteria-infected bystander macrophages trigger maturation of dendritic cells and enhance their ability to mediate HIV transinfection.

Eur J Immunol 2012 May;42(5):1192-202

Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.

Synergistic interplay between Mycobacterium tuberculosis (Mtb) and HIV in coinfected individuals leads to the acceleration of both tuberculosis and HIV disease. Mtb, as well as HIV, may modulate the function of many immune cells, including DCs. To dissect the bystander impact of Mφs infected with Mtb on DC functionality, we here investigated changes in DC phenotype, cytokine profiles, and HIV-1 transinfecting ability. An in vitro system was used in which human monocyte-derived DCs were exposed to soluble factors released by Mφs infected with mycobacteria, including virulent clinical Mtb isolates and nonvirulent BCG. Soluble factors secreted from Mtb-infected Mφs, and to a lesser extent BCG-infected Mφs, resulted in the production of proinflammatory cytokines and partial upregulation of DC maturation markers. Interestingly, the HIV-1 transinfecting ability of DCs was enhanced upon exposure to soluble factors released by Mtb-infected Mφs. In summary, our study shows that DCs exposed to soluble factors released by mycobacteria-infected Mφs undergo maturation and display an augmented ability to transmit HIV-1 in trans. These findings highlight the important role of bystander effects during the course of Mtb-HIV coinfection and suggest that Mtb-infected Mφs may contribute to an environment that supports DC-mediated spread and amplification of HIV in coinfected individuals.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/eji.201142049DOI Listing
May 2012

Failure to recruit anti-inflammatory CD103+ dendritic cells and a diminished CD4+ Foxp3+ regulatory T cell pool in mice that display excessive lung inflammation and increased susceptibility to Mycobacterium tuberculosis.

Infect Immun 2012 Mar 3;80(3):1128-39. Epub 2012 Jan 3.

Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.

Susceptibility to Mycobacterium tuberculosis is characterized by excessive lung inflammation, tissue damage, and failure to control bacterial growth. To increase our understanding of mechanisms that may regulate the host immune response in the lungs, we characterized dendritic cells expressing CD103 (α(E) integrin) (αE-DCs) and CD4(+) Foxp3(+) regulatory T (T(reg)) cells during M. tuberculosis infection. In resistant C57BL/6 and BALB/c mice, the number of lung αE-DCs increased dramatically during M. tuberculosis infection. In contrast, highly susceptible DBA/2 mice failed to recruit αE-DCs even during chronic infection. Even though tumor necrosis factor alpha (TNF-α) is produced by multiple DCs and macrophage subsets and is required for control of bacterial growth, αE-DCs remained TNF-α negative. Instead, αE-DCs contained a high number of transforming growth factor beta-producing cells in infected mice. Further, we show that T(reg) cells in C57BL/6 and DBA/2 mice induce gamma interferon during pulmonary tuberculosis. In contrast to resistant mice, the T(reg) cell population was diminished in the lungs, but not in the draining pulmonary lymph nodes (PLN), of highly susceptible mice during chronic infection. T(reg) cells have been reported to inhibit M. tuberculosis-specific T cell immunity, leading to increased bacterial growth. Still, despite the reduced number of lung T(reg) cells in DBA/2 mice, the bacterial load in the lungs was increased compared to resistant animals. Our results show that αE-DCs and T(reg) cells that may regulate the host immune response are increased in M. tuberculosis-infected lungs of resistant mice but diminished in infected lungs of susceptible mice.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/IAI.05552-11DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3294659PMC
March 2012

Silencing suppressor of cytokine signaling-1 (SOCS1) in macrophages improves Mycobacterium tuberculosis control in an interferon-gamma (IFN-gamma)-dependent manner.

J Biol Chem 2011 Jul 27;286(30):26873-87. Epub 2011 May 27.

Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 17177, Sweden.

Protection against infection with Mycobacterium tuberculosis demands IFN-γ. SOCS1 has been shown to inhibit responses to IFN-γ and might thereby play a central role in the outcome of infection. We found that M. tuberculosis is a highly efficient stimulator of SOCS1 expression in murine and human macrophages and in tissues from infected mice. Surprisingly, SOCS1 reduced responses to IL-12, resulting in an impaired IFN-γ secretion by macrophages that in turn accounted for a deteriorated intracellular mycobacterial control. Despite SOCS1 expression, mycobacteria-infected macrophages responded to exogenously added IFN-γ. SOCS1 attenuated the expression of the majority of genes modulated by M. tuberculosis infection of macrophages. Using a conditional knockdown strategy in mice, we found that SOCS1 expression by macrophages hampered M. tuberculosis clearance early after infection in vivo in an IFN-γ-dependent manner. On the other hand, at later time points, SOCS1 expression by non-macrophage cells protected the host from infection-induced detrimental inflammation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M111.238287DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3143647PMC
July 2011