Publications by authors named "Lauren E Kinsman-Costello"

2 Publications

  • Page 1 of 1

Associations between redox-sensitive trace metals and microbial communities in a Proterozoic ocean analogue.

Geobiology 2020 07 17;18(4):462-475. Epub 2020 Mar 17.

Department of Biological Sciences, Kent State University, Kent, OH, USA.

Constraints on Precambrian ocean chemistry are dependent upon sediment geochemistry. However, diagenesis and metamorphism can destroy primary biosignatures, making it difficult to consider biology when interpreting geochemical data. Modern analogues for ancient ecosystems can be useful tools for identifying how sediment geochemistry records an active biosphere. The Middle Island Sinkhole (MIS) in Lake Huron is an analogue for shallow Proterozoic waters due to its low oxygen water chemistry and microbial communities that exhibit diverse metabolic functions at the sediment-water interface. This study uses sediment trace metal contents and microbial abundances in MIS sediments and an oxygenated Lake Huron control site (LH) to infer mechanisms for trace metal burial. The adsorption of trace metals to Mn-oxyhydroxides is a critical burial pathway for metals in oxic LH sediments, but not for the MIS mat and sediments, consistent with conventional understanding of Mn cycling. Micronutrient trace metals (e.g., Zn) are associated with organic matter regardless of oxygen and sulfide availability. Although U and V are conventionally considered to be organically complexed in suboxic and anoxic conditions, U and organic covary in oxic LH sediments, and Mn-oxyhydroxide cycling dominates V deposition in the anoxic MIS sediments. Significant correlations between Mo and organic matter across all redox regimes have major implications for our interpretations of Mo isotope systematics in the geologic record. Finally, while microbial groups vary between the sampling locales (e.g., the cyanobacteria in the MIS microbial mat are not present in LH sediments), LH and MIS ultimately have similar relationships between microbial assemblages and metal burial, making it difficult to link trace metal burial to microbial metabolisms. Together, these results indicate that bulk sediment trace metal composition does not capture microbiological processes; more robust trace metal geochemistry such as isotopes and speciation may be critical for understanding the intersections between microbiology and sediment geochemistry.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/gbi.12388DOI Listing
July 2020

Natural stressors in uncontaminated sediments of shallow freshwaters: the prevalence of sulfide, ammonia, and reduced iron.

Environ Toxicol Chem 2015 Mar 20;34(3):467-79. Epub 2015 Jan 20.

W.K. Kellogg Biological Station and Department of Zoology, Michigan State University, Hickory Corners, Michigan, USA.

Potentially toxic levels of 3 naturally occurring chemical stressors (dissolved sulfide, ammonia, and iron) can appear in freshwater sediments, although their roles in shaping ecosystem structure (i.e., plant and animal communities) and function (e.g., biologically mediated elemental cycles) have received little study. The present critical review discusses the prevalence and ecological effects of potentially toxic concentrations of sulfide, ammonia, and iron in uncontaminated freshwater sediments, including a review of the literature as well as a case study presenting previously unpublished data on sediment porewaters from a diverse set of shallow (<2 m) freshwater ecosystems in southwest Michigan, USA. Measured concentrations are compared with surface water quality criteria established by the US Environmental Protection Agency (USEPA) and with acute and chronic toxic thresholds in the published literature, where available. Based on USEPA criteria for aquatic life for these 3 stressors, the benthic environment of almost every freshwater ecosystem sampled was theoretically stressful to some component of aquatic life in some area or at some time (i.e., in at least 1 sample), and 54% of samples exceeded more than 1 criterion simultaneously. Organismal tolerances to chemical stressors vary, so the observed concentrations are likely shaping benthic animal communities and influencing rates of ecosystem processes. Consideration of the role of natural chemical stressors is important in shaping freshwater benthic environments and in developing bioassessments, restoration goals, and remediation plans. Environ Toxicol Chem 2015;34:467-479. © 2014 SETAC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/etc.2801DOI Listing
March 2015