Publications by authors named "Laure Bonnaud"

17 Publications

  • Page 1 of 1

Emergence of sensory structures in the developing epidermis in sepia officinalis and other coleoid cephalopods.

J Comp Neurol 2014 Sep 8;522(13):3004-19. Epub 2014 Apr 8.

Museum National d'Histoire Naturelle (MNHN), DMPA, UMR Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), MNHN CNRS 7208, IRD 207, UPMC, CP51 75005, Paris, France; Université Pierre et Marie Curie-Paris, Paris, 6, France.

Embryonic cuttlefish can first respond to a variety of sensory stimuli during early development in the egg capsule. To examine the neural basis of this ability, we investigated the emergence of sensory structures within the developing epidermis. We show that the skin facing the outer environment (not the skin lining the mantle cavity, for example) is derived from embryonic domains expressing the Sepia officinalis ortholog of pax3/7, a gene involved in epidermis specification in vertebrates. On the head, they are confined to discrete brachial regions referred to as "arm pillars" that expand and cover Sof-pax3/7-negative head ectodermal tissues. As revealed by the expression of the S. officinalis ortholog of elav1, an early marker of neural differentiation, the olfactory organs first differentiate at about stage 16 within Sof-pax3/7-negative ectodermal regions before they are covered by the definitive Sof-pax3/7-positive outer epithelium. In contrast, the eight mechanosensory lateral lines running over the head surface and the numerous other putative sensory cells in the epidermis, differentiate in the Sof-pax3/7-positive tissues at stages ∼24-25, after they have extended over the entire outer surfaces of the head and arms. Locations and morphologies of the various sensory cells in the olfactory organs and skin were examined using antibodies against acetylated tubulin during the development of S. officinalis and were compared with those in hatchlings of two other cephalopod species. The early differentiation of olfactory structures and the peculiar development of the epidermis with its sensory cells provide new perspectives for comparisons of developmental processes among molluscs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/cne.23562DOI Listing
September 2014

A study of the electrical polarization of Sepia officinalis yolk envelope, a role for Na(+)/K(+)-ATPases in osmoregulation?

Commun Integr Biol 2013 Nov 21;6(6):e26035. Epub 2013 Aug 21.

Univ. Paris Diderot; Sorbonne Paris Cité, Institut des Energies de Demain (FRE 3597); Paris, France.

The cuttlefish Sepia officinalis mate and spawn in the intertidal zone where eggs are exposed during low tide to osmotic stress. Embryonic outer yolk sac is a putative site for osmoregulation of young S. officinalis embryos. By using electrophysiological recordings and immunostaining we showed, (i) that the chorion is only a passive barrier for ions, since large molecules could not pass through it, (ii) that a complex transepithelial potential difference occurs through the yolk epithelium, (iii) that ionocyte-like cells and Na(+)/K(+)-ATPases were localized in the yolk epithelium and (iv) that ouabain sensitive Na(+)/K(+)-ATPase activity could participate to this yolk polarization. These data warrant further study on the role of ion transport systems of this epithelium in the osmoregulation processes in S. officinalis embryos.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4161/cib.26035DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3913672PMC
November 2013

Cephalopods in neuroscience: regulations, research and the 3Rs.

Invert Neurosci 2014 Mar 3;14(1):13-36. Epub 2014 Jan 3.

Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy,

Cephalopods have been utilised in neuroscience research for more than 100 years particularly because of their phenotypic plasticity, complex and centralised nervous system, tractability for studies of learning and cellular mechanisms of memory (e.g. long-term potentiation) and anatomical features facilitating physiological studies (e.g. squid giant axon and synapse). On 1 January 2013, research using any of the about 700 extant species of "live cephalopods" became regulated within the European Union by Directive 2010/63/EU on the "Protection of Animals used for Scientific Purposes", giving cephalopods the same EU legal protection as previously afforded only to vertebrates. The Directive has a number of implications, particularly for neuroscience research. These include: (1) projects will need justification, authorisation from local competent authorities, and be subject to review including a harm-benefit assessment and adherence to the 3Rs principles (Replacement, Refinement and Reduction). (2) To support project evaluation and compliance with the new EU law, guidelines specific to cephalopods will need to be developed, covering capture, transport, handling, housing, care, maintenance, health monitoring, humane anaesthesia, analgesia and euthanasia. (3) Objective criteria need to be developed to identify signs of pain, suffering, distress and lasting harm particularly in the context of their induction by an experimental procedure. Despite diversity of views existing on some of these topics, this paper reviews the above topics and describes the approaches being taken by the cephalopod research community (represented by the authorship) to produce "guidelines" and the potential contribution of neuroscience research to cephalopod welfare.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10158-013-0165-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3938841PMC
March 2014

Ancient origin of somatic and visceral neurons.

BMC Biol 2013 Apr 30;11:53. Epub 2013 Apr 30.

Institut de Biologie de l'École Normale Supérieure-IBENS, CNRS UMR8197, INSERM U1024, Paris, France.

Background: A key to understanding the evolution of the nervous system on a large phylogenetic scale is the identification of homologous neuronal types. Here, we focus this search on the sensory and motor neurons of bilaterians, exploiting their well-defined molecular signatures in vertebrates. Sensorimotor circuits in vertebrates are of two types: somatic (that sense the environment and respond by shaping bodily motions) and visceral (that sense the interior milieu and respond by regulating vital functions). These circuits differ by a small set of largely dedicated transcriptional determinants: Brn3 is expressed in many somatic sensory neurons, first and second order (among which mechanoreceptors are uniquely marked by the Brn3+/Islet1+/Drgx+ signature), somatic motoneurons uniquely co-express Lhx3/4 and Mnx1, while the vast majority of neurons, sensory and motor, involved in respiration, blood circulation or digestion are molecularly defined by their expression and dependence on the pan-visceral determinant Phox2b.

Results: We explore the status of the sensorimotor transcriptional code of vertebrates in mollusks, a lophotrochozoa clade that provides a rich repertoire of physiologically identified neurons. In the gastropods Lymnaea stagnalis and Aplysia californica, we show that homologues of Brn3, Drgx, Islet1, Mnx1, Lhx3/4 and Phox2b differentially mark neurons with mechanoreceptive, locomotory and cardiorespiratory functions. Moreover, in the cephalopod Sepia officinalis, we show that Phox2 marks the stellate ganglion (in line with the respiratory--that is, visceral--ancestral role of the mantle, its target organ), while the anterior pedal ganglion, which controls the prehensile and locomotory arms, expresses Mnx.

Conclusions: Despite considerable divergence in overall neural architecture, a molecular underpinning for the functional allocation of neurons to interactions with the environment or to homeostasis was inherited from the urbilaterian ancestor by contemporary protostomes and deuterostomes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1741-7007-11-53DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660236PMC
April 2013

Cephalopod genomics: A plan of strategies and organization.

Stand Genomic Sci 2012 Oct 26;7(1):175-88. Epub 2012 Sep 26.

Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA.

The Cephalopod Sequencing Consortium (CephSeq Consortium) was established at a NESCent Catalysis Group Meeting, "Paths to Cephalopod Genomics- Strategies, Choices, Organization," held in Durham, North Carolina, USA on May 24-27, 2012. Twenty-eight participants representing nine countries (Austria, Australia, China, Denmark, France, Italy, Japan, Spain and the USA) met to address the pressing need for genome sequencing of cephalopod mollusks. This group, drawn from cephalopod biologists, neuroscientists, developmental and evolutionary biologists, materials scientists, bioinformaticians and researchers active in sequencing, assembling and annotating genomes, agreed on a set of cephalopod species of particular importance for initial sequencing and developed strategies and an organization (CephSeq Consortium) to promote this sequencing. The conclusions and recommendations of this meeting are described in this white paper.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4056/sigs.3136559DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3570802PMC
October 2012

Reflectin genes and development of iridophore patterns in Sepia officinalis embryos (Mollusca, Cephalopoda).

Dev Dyn 2013 May 12;242(5):560-71. Epub 2013 Mar 12.

Muséum National d'Histoire Naturelle MNHN, DMPA, UMR Biologie des Organismes et Ecosystèmes Aquatiques BOREA, MNHN CNRS 7208, IRD 207, UPMC, 75005 Paris, France.

Background: In the cuttlefish Sepia officinalis, iridescence is known to play a role in patterning and communication. In iridophores, iridosomes are composed of reflectins, a protein family, which show great diversity in all cephalopod species. Iridosomes are established before hatching, but very little is known about how these cells are established, their distribution in embryos, or the contribution of each reflectin gene to iridosome structures.

Results: Six reflectin genes are expressed during the development of iridosomes in Sepia officinalis. We show that they are expressed in numerous parts of the body before hatching. Evidence of the colocalization of two different genes of reflectin was found. Curiously, reflectin mRNA expression was no longer detectable at the time of hatchling, while reflectin proteins were present and gave rise to visible iridescence.

Conclusion: These data suggest that several different forms of reflectins are simultaneously used to produce iridescence in S. officinalis and that mRNA production and translation are decoupled in time during iridosome development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/dvdy.23938DOI Listing
May 2013

Delayed and asynchronous ganglionic maturation during cephalopod neurogenesis as evidenced by Sof-elav1 expression in embryos of Sepia officinalis (Mollusca, Cephalopoda).

J Comp Neurol 2013 May;521(7):1482-96

Muséum National d'Histoire Naturelle (MNHN), DMPA, UMR Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), MNHN CNRS 7208, IRD 207, UPMC, 75005 Paris, France.

Among the Lophotrochozoa, centralization of the nervous system reaches an exceptional level of complexity in cephalopods, where the typical molluscan ganglia become highly developed and fuse into hierarchized lobes. It is known that ganglionic primordia initially emerge early and simultaneously during cephalopod embryogenesis but no data exist on the process of neuron differentiation in this group. We searched for members of the elav/hu family in the cuttlefish Sepia officinalis, since they are one of the first genetic markers of postmitotic neural cells. Two paralogs were identified and the expression of the most neural-specific gene, Sof-elav1, was characterized during embryogenesis. Sof-elav1 is expressed in all ganglia at one time of development, which provides the first genetic map of neurogenesis in a cephalopod. Our results unexpectedly revealed that Sof-elav1 expression is not similar and not coordinated in all the prospective ganglia. Both palliovisceral ganglia show extensive Sof-elav1 expression soon after emergence, showing that most of their cells differentiate into neurons at an early stage. On the contrary, other ganglia, and especially both cerebral ganglia that contribute to the main parts of the brain learning centers, show a late extensive Sof-elav1 expression. These delayed expressions in ganglia suggest that most ganglionic cells retain their proliferative capacities and postpone differentiation. In other molluscs, where a larval nervous system predates the development of the definitive adult nervous system, cerebral ganglia are among the first to mature. Thus, such a difference may constitute a cue in understanding the peculiar brain evolution in cephalopods.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/cne.23231DOI Listing
May 2013

Mechanisms of protein degradation in mantle muscle and proposed gill remodeling in starved Sepia officinalis.

Am J Physiol Regul Integr Comp Physiol 2012 Aug 30;303(4):R427-37. Epub 2012 May 30.

Department of Biochemistry, Memorial University of Newfoundland, St. John’s, Canada.

Cephalopods have relatively high rates of protein synthesis compared to rates of protein degradation, along with minimal carbohydrate and lipid reserves. During food deprivation on board protein is catabolized as a metabolic fuel. The aim of the current study was to assess whether biochemical indices of protein synthesis and proteolytic mechanisms were altered in cuttlefish, Sepia officinalis, starved for 7 days. In mantle muscle, food deprivation is associated with a decrease in protein synthesis, as indicated by a decrease in the total RNA level and dephosphorylation of key signaling molecules, such as the eukaryote binding protein, 4E-BP1 (regulator of translation) and Akt. The ubiquitination-proteasome system (UPS) is activated as shown by an increase in the levels of proteasome β-subunit mRNA, polyubiquitinated protein, and polyubiquitin mRNA. As well, cathepsin activity levels are increased, suggesting increased proteolysis through the lysosomal pathway. Together, these mechanisms could supply amino acids as metabolic fuels. In gill, the situation is quite different. It appears that during the first stages of starvation, both protein synthesis and protein degradation are enhanced in gill. This is based upon increased phosphorylation of 4E-BP1 and enhanced levels of UPS indicators, especially 20S proteasome activity and polyubiquitin mRNA. It is proposed that an increased protein turnover is related to gill remodeling perhaps to retain essential hemolymph-borne compounds.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpregu.00077.2012DOI Listing
August 2012

ESTs library from embryonic stages reveals tubulin and reflectin diversity in Sepia officinalis (Mollusca — Cephalopoda).

Gene 2012 May;498(2):203-11

Muséum National d'Histoire Naturelle (MNHN), Département Milieux et Peuplements Aquatiques (DMPA), UMR Biologie des ORganismes et Ecosystèmes Aquatiques (BOREA), MNHN, CNRS 7208, IRD 207, UPMC. Paris, France.

New molecular resources regarding the so-called “non-standard models” in biology extend the present knowledge and are essential for molecular evolution and diversity studies (especially during the development) and evolutionary inferences about these zoological groups, or more practically for their fruitful management. Sepia officinalis, an economically important cephalopod species, is emerging as a new lophotrochozoan developmental model. We developed a large set of expressed sequence tags (ESTs) from embryonic stages of S. officinalis, yielding 19,780 non-redundant sequences (NRS). Around 75% of these sequences have no homologs in existing available databases. This set is the first developmental ESTs library in cephalopods. By exploring these NRS for tubulin, a generic protein family, and reflectin, a cephalopod specific protein family,we point out for both families a striking molecular diversity in S. officinalis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2012.01.100DOI Listing
May 2012

orthodenticle/otx ortholog expression in the anterior brain and eyes of Sepia officinalis (Mollusca, Cephalopoda).

Gene Expr Patterns 2012 Mar-Apr;12(3-4):109-16. Epub 2012 Feb 18.

Muséum National d'Histoire Naturelle (MNHN), Département Milieux et Peuplements Aquatiques (DMPA), UMR Biologie des ORganismes et Ecosystèmes Aquatiques (BOREA), MNHN CNRS 7208, IRD 207, UPMC, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France.

The origin of cerebral structures is a major issue in both developmental and evolutionary biology. Among Lophotrochozoans, cephalopods present both a derived nervous system and an original body plan, therefore they constitute a key model to study the evolution of nervous system and molecular processes that control the neural organization. We characterized a partial sequence of an ortholog of otx2 in Sepia officinalis embryos, a gene specific to the anterior nervous system and eye development. By in situ hybridization, we assessed the expression pattern of otx2 during S. officinalis organogenesis and we showed that otx is expressed (1) in the eyes, from early to late developmental stages as observed in other species (2) in the nervous system during late developmental stages. The otx ortholog does not appear to be required for the precocious emergence of the nervous ganglia in cephalopods and is later expressed only in the most anterior ganglia of the future brain. Finally, otx expression becomes restricted to localized part of the brain, where it could be involved in the functional specification of the central nervous system of S. officinalis. These results suggest a conserved involvement of otx in eye maturation and development of the anterior neural structures in S. officinalis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gep.2012.02.001DOI Listing
June 2015

The dynamic nitric oxide pattern in developing cuttlefish Sepia officinalis.

Dev Dyn 2012 Feb 3;241(2):390-402. Epub 2012 Jan 3.

Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Naples, Italy.

Background: Nitric oxide (NO) is implied in many important biological processes in all metazoans from porifera to chordates. In the cuttlefish Sepia officinalis NO plays a key role in the defense system and neurotransmission.

Results: Here, we detected for the first time NO, NO synthase (NOS) and transcript levels during the development of S. officinalis. The spatial pattern of NO and NOS is very dynamic, it begins during organogenesis in ganglia and epithelial tissues, as well as in sensory cells. At later stages, NO and NOS appear in organs and/or structures, including Hoyle organ, gills and suckers. Temporal expression of NOS, followed by real-time PCR, changes during development reaching the maximum level of expression at stage 26.

Conclusions: Overall these data suggest the involvement of NO during cuttlefish development in different fundamental processes, such as differentiation of neural and nonneural structures, ciliary beating, sensory cell maintaining, and organ functioning.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/dvdy.23722DOI Listing
February 2012

FaRP cell distribution in the developing CNS suggests the involvement of FaRPs in all parts of the chromatophore control pathway in Sepia officinalis (Cephalopoda).

Zoology (Jena) 2011 Apr;114(2):113-22

Laboratory Biologie des Organismes et Ecosystèmes Aquatiques, UMR MNHN/CNRS 7208/IRD 207/UPMC, Muséum National d'Histoire Naturelle, DMPA, 55 rue Buffon, CP51, F-75005 Paris, France.

The FMRFamide-related peptide (FaRP) family includes a wide range of neuropeptides that have a role in many biological functions. In cephalopods, these peptides intervene in the peculiar body patterning system used for communication and camouflage. This system is particularly well developed in the cuttlefish and is functional immediately after hatching (stage 30). In this study, we investigate when and how the neural structures involved in the control of body patterning emerge and combine during Sepia embryogenesis, by studying the expression or the production of FaRPs. We detected FaRP expression and production in the nervous system of embryos from the beginning of organogenesis (stage 16). The wider FaRP expression was observed concomitantly with brain differentiation (around stage 22). Until hatching, FaRP-positive cells were located in specific areas of the central and peripheral nervous system (CNS and PNS). Most of these areas were implicated in the control of body patterns, suggesting that FaRPs are involved in all parts of the neural body pattern control system, from the 'receptive areas' via the CNS to the chromatophore effectors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.zool.2010.11.002DOI Listing
April 2011

Shh and Pax6 have unconventional expression patterns in embryonic morphogenesis in Sepia officinalis (Cephalopoda).

Gene Expr Patterns 2009 Oct 13;9(7):461-7. Epub 2009 Aug 13.

Muséum National d'Histoire Naturelle, Département Milieux et Peuplements Aquatiques, Laboratoire Biologie des ORganismes et Ecosystèmes Aquatiques, UMR MNHN USM 401, CNRS 7208, IRD 207, UPMC, Paris, France.

Cephalopods show a very complex nervous system, particularly derived when compared to other molluscs. In vertebrates, the setting up of the nervous system depends on genes such as Shh and Pax6. In this paper we assess Shh and Pax6 expression patterns during Sepia officinalis development by whole-mount in situ hybridization. In vertebrates, Shh has been shown to indirectly inhibit Pax6. This seems to be the case in cephalopods as the expression patterns of these genes do not overlap during S. officinalis development. Pax6 is expressed in the optic region and brain and Shh in gut structures, as already seen in vertebrates and Drosophila. Thus, both genes show expression in analogous structures in vertebrates. Surprisingly, they also exhibit unconventional expressions such as in gills for Pax6 and ganglia borders for Shh. They are also expressed in many cephalopods' derived characters among molluscs as in arm suckers for Pax6 and beak producing tissues, nuchal organ and neural cord of the arms for Shh. This new data supports the fact that molecular control patterns have evolved with the appearance of morphological novelties in cephalopods as shown in this new model, S. officinalis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gep.2009.08.001DOI Listing
October 2009

Somatic muscle development in Sepia officinalis (cephalopoda - mollusca): a new role for NK4.

Dev Dyn 2008 Jul;237(7):1944-51

Département Milieux et Peuplements Aquatiques, Laboratoire Biologie des Organismes Marins et Ecosystèmes, CNRS UMR5178 - MNHN USM 0401, Paris, France.

Cephalopods are emerging as new developmental models. These lophotrochozoans exhibit numerous morphological peculiarities among molluscs, not only regarding their nervous system but also regarding their circulatory system, which is closed and includes three hearts. However, the molecular control of cardiac myogenesis in lophotrochozoans is largely unknown. In other groups, cardiac development depends on numerous different genes, among them NK4 seems to have a well-conserved function throughout evolution. In this study, we assessed the expression pattern of SoNK4, the Sepia officinalis NK4 homologue, during Sepia officinalis development by whole-mount in situ hybridization. SoNK4 expression begins before morphogenesis, is not restricted to prospective cardiac muscles but above all concerns mesodermal structures potentially rich in muscles such as arms and mantle. These results suggest an important role of SoNK4 in locomotory (somatic) muscles development of Sepia officinalis, and thus a new role for NK4.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/dvdy.21614DOI Listing
July 2008

Unexpected variation of Hox genes' homeodomains in cephalopods.

Mol Phylogenet Evol 2006 Sep 26;40(3):872-9. Epub 2006 Apr 26.

Développement et Evolution, UMR 7622, CNRS et Université P et M Curie, Paris 6, Case 24, 9 quai St Bernard, 75252 Paris Cedex 05, France.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ympev.2006.04.004DOI Listing
September 2006

A molecular and karyological approach to the taxonomy of Nautilus.

C R Biol 2004 Feb;327(2):133-8

Département Milieux et Peuplements aquatiques, UMR 5178 (BOME), Muséum national d'histoire naturelle, Institut Jacques-Monod-CNRS, universités Paris-6 & -7, 2, Paris, France.

Nautiloids, the externally shelled cephalopods of Cambrian origin, are the most ancient lineage among extant cephalopods. Their ancestral characters are explored based on morphological and molecular data (18S rDNA sequence) to investigate the evolution of present cephalopod lineages. Among molluscs, nautilus 18S rDNA gene is the longest reported so far, due to large nucleotidic insertions. By comparison with other 18S sequences, the complete gene of N. macromphalus helps to clarify the taxonomic status of the three universally recognised Nautilus species. The range of interspecific molecular differences supports separation of the present species into two surviving ectocochleate genera, Nautilus and Allonautilus. Nautiloid 18S is considered as corresponding to the ancestral form of 18S as is the number of chromosomes in Nautilus (52), the lowest among cephalopods. Comparison of karyological characteristics amongst cephalopods in a phylogenetic context suggests a possible correlation between duplication events and lineage divergence.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.crvi.2003.12.004DOI Listing
February 2004

Phylogenetic analysis of vertebrate fibrillar collagen locates the position of zebrafish alpha3(I) and suggests an evolutionary link between collagen alpha chains and hox clusters.

J Mol Evol 2003 Nov;57(5):501-14

Institut de Biologie et Chimie des Protéines, Equipe Matrice Extracellulaire et Développement, CNRS UMR 5086, 7 passage du Vercors, 69367 Lyon, France.

Type I collagen in tetrapods is usually a heterotrimeric molecule composed of two alpha1 and one alpha2 chains. In some teleosts, a third alpha chain has been identified by chromatography, suggesting that type I collagen should also exist as an alpha1(I)alpha2(I)alpha3(I) heterotrimer. We prepared, from zebrafish, three distinct cDNAs identified to be those of the collagen alpha1(I), alpha2(I), and alpha3(I) chains. In this study on the evolution of fibrillar collagen alpha chains and their relationships, an exhaustive phylogenetic analysis, using vertebrate fibrillar collagen sequences, showed that each alpha chain constitutes a monophyletic cluster. Results obtained with the newly isolated sequences of the zebrafish showed that the alpha3(I) chain is phylogenetically close to the alpha1(I) chain and support the hypothesis that the alpha3(I) chain arose from a duplication of the alpha1(I) gene. The duplication might occur during the duplication of the actinopterygian genome, soon after the divergence of actinopterygians and sarcopterygians, a hypothesis supported by the demonstration of a syntenic evolution between a set of fibrillar collagen genes and Hox clusters in mammals. An evolutionary scenario is proposed in which phylogenetic relationships of the alpha chains of fibrillar collagens of vertebrates could be related to Hox cluster history.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00239-003-2502-xDOI Listing
November 2003