Publications by authors named "Laura Palladino"

3 Publications

  • Page 1 of 1

Use of lentiviral pseudotypes as an alternative to reassortant or Triton X-100-treated wild-type Influenza viruses in the neuraminidase inhibition enzyme-linked lectin assay.

Influenza Other Respir Viruses 2019 09;13(5):504-516

VisMederi s.r.l., Strada del Petriccio e Belriguardo, Siena, Italy.

Background: Formulation of neuraminidase (NA) within influenza vaccines is gaining importance in light of recent human studies. The enzyme-linked lectin assay (ELLA) is considered a reliable assay to evaluate human anti-NA antibodies.

Objectives: To overcome interference by hemagglutinin (HA)-specific antibodies and detect neuraminidase inhibitory (NI) antibodies only, two different sources of antigen have been studied in ELLA: reassortant viruses with a mismatched avian origin-HA or Triton X-100 (Tx)-treated wild-type viruses. Pseudotypes or pseudovirus (PV), characterized by a lentivirus core bearing human influenza NA and avian influenza HA, were investigated as an alternative source of antigen and compared to HA-mismatched and Tx-treated viruses, since represent a safer product to be handled.

Methods: Two independent panels of sera were analyzed by ELLA to evaluate the anti-NA response against N1 (A/California/07/2009 (H1N1pdm)) and N2 (A/Hong Kong/4801/2014 (H3N2)). The NA inhibition (NI) antibody titers measured as either the 50% end point or 50% inhibitory concentration (IC ) were compared for every source of antigen.

Results: The ELLA assay performed well with all three sources of antigen. NI titers measured using each antigen type correlated well when reported either as end point titers or as the IC .

Conclusions: This study suggests that HA-mismatched whole virus, Triton-treated wild-type virus or PV can be used to measure NI antibody titers of human sera, but further comparability/validation assays should be performed to assess statistical differences. The data support the use of PV as an attractive alternative source of antigen and justify further investigation to improve stability of this antigen source.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/irv.12669DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6692537PMC
September 2019

Integrase Defective Lentiviral Vector as a Vaccine Platform for Delivering Influenza Antigens.

Front Immunol 2018 5;9:171. Epub 2018 Feb 5.

Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy.

Viral vectors represent an attractive technology for vaccine delivery. We exploited the integrase defective lentiviral vector (IDLV) as a platform for delivering relevant antigens within the context of the ADITEC collaborative research program. In particular, Influenza virus hemagglutinin (HA) and nucleoprotein (NP) were delivered by IDLVs while H1N1 A/California/7/2009 subunit vaccine (HAp) with or without adjuvant was used to compare the immune response in a murine model of immunization. In order to maximize the antibody response against HA, both IDLVs were also pseudotyped with HA (IDLV-HA/HA and IDLV-NP/HA, respectively). Groups of CB6F1 mice were immunized intramuscularly with a single dose of IDLV-NP/HA, IDLV-HA/HA, HAp alone, or with HAp together with the systemic adjuvant MF59. Six months after the vaccine prime all groups were boosted with HAp alone. Cellular and antibody responses to influenza antigens were measured at different time points after the immunizations. Mice immunized with HA-pseudotyped IDLVs showed similar levels of anti-H1N1 IgG over time, evaluated by ELISA, which were comparable to those induced by HAp + MF59 vaccination, but significantly higher than those induced by HAp alone. The boost with HAp alone induced an increase of antibodies in all groups, and the responses were maintained at higher levels up to 18 weeks post-boost. The antibody response was functional and persistent overtime, capable of neutralizing virus infectivity, as evaluated by hemagglutination inhibition and microneutralization assays. Moreover, since neuraminidase (NA)-expressing plasmid was included during IDLV preparation, immunization with IDLV-NP/HA and IDLV-HA/HA also induced functional anti-NA antibodies, evaluated by enzyme-linked lectin assay. IFNγ-ELISPOT showed evidence of HA-specific response in IDLV-HA/HA immunized animals and persistent NP-specific CD8+ T cell response in IDLV-NP/HA immunized mice. Taken together our results indicate that IDLV can be harnessed for producing a vaccine able to induce a comprehensive immune response, including functional antibodies directed toward HA and NA proteins present on the vector particles in addition to a functional T cell response directed to the protein transcribed from the vector.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fimmu.2018.00171DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5807328PMC
April 2019

Age and Influenza-Specific Pre-Vaccination Antibodies Strongly Affect Influenza Vaccine Responses in the Icelandic Population whereas Disease and Medication Have Small Effects.

Front Immunol 2017 8;8:1872. Epub 2018 Jan 8.

deCODE Genetics, Amgen Inc., Reykjavik, Iceland.

Influenza vaccination remains the best strategy for the prevention of influenza virus-related disease and reduction of disease severity and mortality. However, there is large individual variation in influenza vaccine responses. In this study, we investigated the effects of gender, age, underlying diseases, and medication on vaccine responses in 1,852 Icelanders of broad age range who received trivalent inactivated influenza virus vaccination in 2012, 2013, or 2015. Hemagglutination inhibition (HAI) and microneutralization (MN) titers were measured in pre- and post-vaccination sera. Of the variables tested, the strongest association was with level of pre-vaccination titer that explained a major part of the variance observed in post-vaccination titers, ranging from 19 to 29%, and from 7 to 21% in fold change (FC), depending on the strain and serological (HAI or MN) analysis performed. Thus, increasing pre-vaccination titer associated with decreasing FC ( = 1.1 × 10-8.6 × 10) and increasing post-vaccination titer ( = 2.1 × 10-1.1 × 10). Questionnaires completed by 87% of the participants revealed that post-vaccination HAI titer showed association with repeated previous influenza vaccinations. Gender had no effect on vaccine response whereas age had a strong effect and explained 1.6-3.1% of HAI post-vaccination titer variance and 3.1% of H1N1 MN titer variance. Vaccine response, both fold increase and seroprotection rate (percentage of individuals reaching HAI ≥ 40 or MN ≥ 20), was higher in vaccinees ≤37 years of age (YoA) than all other age groups. Furthermore, a reduction was observed in the H1N1 MN titer in people ≥63 YoA, demonstrating a decreased neutralizing functionality of vaccine-induced antibodies at older age. We tested the effects of underlying autoimmune diseases, asthma and allergic diseases and did not observe significant associations with vaccine responses. Intake of immune modulating medication did not show any association. Taken together, our results show that previous encounter of influenza vaccination or infection, reflected in high HAI and MN pre-vaccination titer has the strongest negative effect on vaccine responses measured as FC and the strongest positive effect on post-vaccination titer. Increasing age had also an effect but not gender, underlying disease or medication.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fimmu.2017.01872DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5766658PMC
January 2018