Publications by authors named "Laura J Jurgens"

6 Publications

  • Page 1 of 1

Stronger predation intensity and impact on prey communities in the tropics.

Ecology 2021 08 13;102(8):e03428. Epub 2021 Jul 13.

Smithsonian Environmental Research Center, Edgewater, Maryland, 21037-0028, USA.

The hypothesis that biotic interactions strengthen toward lower latitudes provides a framework for linking community-scale processes with the macroecological scales that define our biosphere. Despite the importance of this hypothesis for understanding community assembly and ecosystem functioning, the extent to which interaction strength varies across latitude and the effects of this variation on natural communities remain unresolved. Predation in particular is central to ecological and evolutionary dynamics across the globe, yet very few studies explore both community-scale causes and outcomes of predation across latitude. Here we expand beyond prior studies to examine two important components of predation strength: intensity of predation (including multiple dimensions of the predator guild) and impact on prey community biomass and structure, providing one of the most comprehensive examinations of predator-prey interactions across latitude. Using standardized experiments, we tested the hypothesis that predation intensity and impact on prey communities were stronger at lower latitudes. We further assessed prey recruitment to evaluate the potential for this process to mediate predation effects. We used sessile marine invertebrate communities and their fish predators in nearshore environments as a model system, with experiments conducted at 12 sites in four regions spanning the tropics to the subarctic. Our results show clear support for an increase in both predation intensity and impact at lower relative to higher latitudes. The predator guild was more diverse at low latitudes, with higher predation rates, longer interaction durations, and larger predator body sizes, suggesting stronger predation intensity in the tropics. Predation also reduced prey biomass and altered prey composition at low latitudes, with no effects at high latitudes. Although recruitment rates were up to three orders of magnitude higher in the tropics than the subarctic, prey replacement through this process was insufficient to dampen completely the strong impacts of predators in the tropics. Our study provides a novel perspective on the biotic interaction hypothesis, suggesting that multiple components of the predator community likely contribute to predation intensity at low latitudes, with important consequences for the structure of prey communities.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ecy.3428DOI Listing
August 2021

Ocean change within shoreline communities: from biomechanics to behaviour and beyond.

Conserv Physiol 2019 18;7(1):coz077. Epub 2019 Nov 18.

Earth and Atmospheric Sciences Department, 1-26 Earth Sciences Building, University of Alberta, Edmonton, AB T6G 2E3, Canada.

Humans are changing the physical properties of Earth. In marine systems, elevated carbon dioxide concentrations are driving notable shifts in temperature and seawater chemistry. Here, we consider consequences of such perturbations for organism biomechanics and linkages amongst species within communities. In particular, we examine case examples of altered morphologies and material properties, disrupted consumer-prey behaviours, and the potential for modulated positive (i.e. facilitative) interactions amongst taxa, as incurred through increasing ocean acidity and rising temperatures. We focus on intertidal rocky shores of temperate seas as model systems, acknowledging the longstanding role of these communities in deciphering ecological principles. Our survey illustrates the broad capacity for biomechanical and behavioural shifts in organisms to influence the ecology of a transforming world.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/conphys/coz077DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6855281PMC
November 2019

Size, growth, and density data for shallow-water sea urchins from Mexico to the Aleutian Islands, Alaska, 1956-2016.

Ecology 2018 03 23;99(3):761. Epub 2018 Jan 23.

POB 2940, Kodiak, Alaska, 99615, USA.

Size, growth, and density have been studied for North American Pacific coast sea urchins Strongylocentrotus purpuratus, S. droebachiensis, S. polyacanthus, Mesocentrotus (Strongylocentrotus) franciscanus, Lytechinus pictus, Centrostephanus coronatus, and Arbacia stellata by various workers at diverse sites and for varying lengths of time from 1956 to present. Numerous peer-reviewed publications have used some of these data but some data have appeared only in graduate theses or the gray literature. There also are data that have never appeared outside original data sheets. Motivation for studies has included fisheries management and environmental monitoring of sewer and power plant outfalls as well as changes associated with disease epidemics. Studies also have focused on kelp restoration, community effects of sea otters, basic sea urchin biology, and monitoring. The data sets presented here are a historical record of size, density, and growth for a common group of marine invertebrates in intertidal and nearshore environments that can be used to test hypotheses concerning future changes associated with fisheries practices, shifts of predator distributions, climate and ecosystem changes, and ocean acidification along the Pacific Coast of North America and islands of the north Pacific. No copyright restrictions apply. Please credit this paper when using the data.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ecy.2123DOI Listing
March 2018

Edge effects reverse facilitation by a widespread foundation species.

Sci Rep 2016 11 23;6:37573. Epub 2016 Nov 23.

Bodega Marine Laboratory and Department of Evolution and Ecology, University of California at Davis, Bodega Bay, California, United States of America.

Dense aggregations of foundation species often mitigate environmental stresses for organisms living among them. Considerable work documents such benefits by comparing conditions inside versus outside these biogenic habitats. However, environmental gradients commonly arise across the extent of even single patches of habitat-forming species, including cases where stresses diverge between habitat interiors and edges. We ask here whether such edge effects could alter how habitat-forming species influence residents, potentially changing the strength or direction of interactions (i.e., from stress amelioration to exacerbation). We take as a model system the classic marine foundation species, Mytilus californianus, the California mussel. Results demonstrate that mussel beds both increase and decrease thermal stresses. Over a distance of 6 to 10 cm from the bed interior to its upper surface, peak temperatures climb from as much as 20 °C below to 5 °C above those of adjacent bedrock. This directional shift in temperature modification affects interactions with juvenile mussels, such that thermal stresses and associated mortality risk are higher at the bed surface, but substantially reduced deeper within the adult matrix. These findings provide a case example of how stress gradients generated across biogenic habitats can markedly alter ecological interactions even within a single habitat patch.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/srep37573DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5120328PMC
November 2016

Evaluating potential conservation conflicts between two listed species: sea otters and black abalone.

Ecology 2015 Nov;96(11):3102-8

Population consequences of endangered species interacting as predators and prey have been considered theoretically and legally, but rarely investigated in the field. We examined relationships between spatially variable populations of a predator, the California sea otter, Enhydra lutris nereis, and a prey species, the black abalone, Haliotis cracherodii. Both species are federally listed under the Endangered Species Act and co-occur along the coast of California. We compared the local abundance and habitat distribution of black abalone at 12 sites with varying densities of sea otters. All of the populations of abalone we examined were in the geographic area currently unaffected by withering disease, which has decimated populations south of the study area. Surprisingly, our findings indicate that sea otter density is positively associated with increased black abalone density. The presence of sea otters also correlated with a shift in black abalone to habitat conferring greater refuge, which could decrease illegal human harvest. These results highlight the need for a multi-species approach to conservation management of the two species, and demonstrate the importance of using field-collected data rather than simple trophic assumptions to understand relationships between jointly vulnerable predator and prey populations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1890/15-0158.1DOI Listing
November 2015

Patterns of Mass Mortality among Rocky Shore Invertebrates across 100 km of Northeastern Pacific Coastline.

PLoS One 2015 3;10(6):e0126280. Epub 2015 Jun 3.

Bodega Marine Laboratory and Department of Evolution and Ecology, University of California at Davis, Bodega Bay, California, United States of America.

Mass mortalities in natural populations, particularly those that leave few survivors over large spatial areas, may cause long-term ecological perturbations. Yet mass mortalities may remain undocumented or poorly described due to challenges in responding rapidly to unforeseen events, scarcity of baseline data, and difficulties in quantifying rare or patchily distributed species, especially in remote or marine systems. Better chronicling the geographic pattern and intensity of mass mortalities is especially critical in the face of global changes predicted to alter regional disturbance regimes. Here, we couple replicated post-mortality surveys with preceding long-term surveys and historical data to describe a rapid and severe mass mortality of rocky shore invertebrates along the north-central California coast of the northeastern Pacific Ocean. In late August 2011, formerly abundant intertidal populations of the purple sea urchin (Strongylocentrotus purpuratus, a well-known ecosystem engineer), and the predatory six-armed sea star (Leptasterias sp.) were functionally extirpated from ~100 km of coastline. Other invertebrates, including the gumboot chiton (Cryptochiton stelleri) the ochre sea star (Pisaster ochraceus), and subtidal populations of purple sea urchins also exhibited elevated mortality. The pattern and extent of mortality suggest the potential for long-term population, community, and ecosystem consequences, recovery from which may depend on the different dispersal abilities of the affected species.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0126280PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4454560PMC
February 2016
-->