Publications by authors named "Laura I Escobar"

16 Publications

  • Page 1 of 1

Identification of a unique endoplasmic retention motif in the Xenopus GIRK5 channel and its contribution to oocyte maturation.

FEBS Open Bio 2021 Feb 10. Epub 2021 Feb 10.

Departamento de Fisiologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico.

G protein-activated inward-rectifying potassium (K ) channels (Kir3/GIRK) participate in cell excitability. The GIRK5 channel is present in Xenopus laevis oocytes. In an attempt to investigate the physiological role of GIRK5, we identified a noncanonical di-arginine endoplasmic reticulum (ER) retention motif (KRXY). This retention motif is located at the N-terminal region of GIRK5, coded by two small exons found only in X. laevis and X. tropicalis. These novel exons are expressed through use of an alternative transcription start site. Mutations in the sequence KRXY produced functional channels and induced progesterone-independent oocyte meiotic progression. The chimeric proteins enhanced green fluorescent protein (EGFP)-GIRK5-WT and the EGFP-GIRK5K13AR14A double mutant, were localized to the ER and the plasma membrane of the vegetal pole of the oocyte, respectively. Silencing of GIRK5 or blocking of this channel by external barium prevented progesterone-induced meiotic progression. The endogenous level of GIRK5 protein decreased through oocyte stages in prophase I augmenting by progesterone. In conclusion, we have identified a unique mechanism by which the expression pattern of a K channel evolved to control Xenopus oocyte maturation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/2211-5463.13113DOI Listing
February 2021

Metabolic acidosis and hyperkalemia differentially regulate cation HCN3 channel in the rat nephron.

J Mol Histol 2020 Dec 18;51(6):701-716. Epub 2020 Oct 18.

Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico, Mexico.

The kidney controls body fluids, electrolyte and acid-base balance. Previously, we demonstrated that hyperpolarization-activated and cyclic nucleotide-gated (HCN) cation channels participate in ammonium excretion in the rat kidney. Since acid-base balance is closely linked to potassium metabolism, in the present work we aim to determine the effect of chronic metabolic acidosis (CMA) and hyperkalemia (HK) on protein abundance and localization of HCN3 in the rat kidney. CMA increased HCN3 protein level only in the outer medulla (2.74 ± 0.31) according to immunoblot analysis. However, immunofluorescence assays showed that HCN3 augmented in cortical proximal tubules (1.45 ± 0.11) and medullary thick ascending limb of Henle's loop (4.48 ± 0.45) from the inner stripe of outer medulla. HCN3 was detected in brush border membranes (BBM) and mitochondria of the proximal tubule by immunogold electron and confocal microscopy in control conditions. Acidosis did not alter HCN3 levels in BBM and mitochondria but augmented them in lysosomes. HCN3 was also immuno-detected in mitoautophagosomes. In the distal nephron, HCN3 was expressed in principal and intercalated cells from cortical to medullary collecting ducts. CMA did not change HCN3 abundance in these nephron segments. In contrast, HK doubled HCN3 level in cortical collecting ducts and favored its basolateral localization in principal cells from the inner medullary collecting ducts. These findings further support HCN channels contribution to renal acid-base and potassium balance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10735-020-09916-2DOI Listing
December 2020

"Funny" channels in cardiac mitochondria modulate membrane potential and oxygen consumption.

Biochem Biophys Res Commun 2020 04 14;524(4):1030-1036. Epub 2020 Feb 14.

Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, 04510, Mexico. Electronic address:

The hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are encoded by a family of four genes (HCN1-4). All isoforms are expressed in the heart, HCN4 being the most abundant in the sinoatrial node (SAN). HCN channels are responsible for the "funny" current (I) associated with the generation and autonomic control of the diastolic depolarization phase of cardiac action potential. In this work we performed a proteomic analysis of HCN4 transfected in HEK293 cells. Most of the identified proteins in the HCN4 network belonged to mitochondria. The subcellular localization of HCN channels was predicted in plasma membrane, mitochondria and nucleus. Experimentally, HCN2 (full-length, truncated), HCN3 (full-length, truncated) and HCN4 (truncated) were detected in rat heart mitochondria by immunoblotting. I sensitive to ZD7288, was recorded by patch-clamp in mitoplasts from cardiomyocytes. Mitochondrial membrane potential (ΔΨm) assessment in H9c2 cells revealed that ZD7288 induced almost 50% higher hyperpolarization respect to control at 30 min. Furthermore, ZD7288 reduced oxygen consumption attributed to ATP synthesis in H9c2 cells. In conclusion, we identify for the first time functional HCN channels in mammalian cardiac mitochondria and demonstrate their impact on ΔΨm and respiration.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2020.02.033DOI Listing
April 2020

Novel Potassium Channels in Kidney Mitochondria: The Hyperpolarization-Activated and Cyclic Nucleotide-Gated HCN Channels.

Int J Mol Sci 2019 Oct 9;20(20). Epub 2019 Oct 9.

Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico.

Hyperpolarization-activated cationic HCN channels comprise four members (HCN1-4) that control dendritic integration, synaptic transmission and action potential firing. In the kidney, HCN1, HCN2 and HCN3 are differentially expressed and contribute to the transport of sodium, potassium (K) and ammonium into the nephrons. HCN3 is regulated by K diets in the kidney. In this work we performed a proteomic analysis of HCN3 expressed in human embryonic kidney cells (HEK293 cells). More than 50% of the interacting proteins belonged to mitochondria. Therefore, we explored the presence of HCN channels in kidney mitochondria. By immunoblotting and immunogold electron microscopy HCN3 protein expression was found in rat kidney mitochondria; it was also confirmed in human kidney. Patch-clamp recordings of renal mitochondria and mitochondria from HEK293 cells overexpressing HCN1, HCN2 and HCN3 channels, stained with MitoTracker Green FM, indicated that only HCN3 could produce inwardly K currents that were inhibited by ZD7288, a specific blocker of HCN channels. Furthermore, ZD7288 caused inhibition of the oxygen consumption coupled to ATP synthesis and hyperpolarization of the inner mitochondrial membrane. In conclusion, we show for the first time that pacemaker HCN channels contribute to K transport in mitochondria facilitating the activity of the respiratory chain and ATP synthesis by controlling the inner mitochondrial membrane potential.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms20204995DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6834191PMC
October 2019

Mutations in ATP6V1B1 and ATP6V0A4 genes cause recessive distal renal tubular acidosis in Mexican families.

Mol Genet Genomic Med 2016 May 14;4(3):303-11. Epub 2016 Feb 14.

Département de Génetique Hôpital Européen Georges Pompidou Paris France.

Background: Autosomal recessive distal renal tubular acidosis (dRTA) is a rare disease characterized by a hyperchloremic metabolic acidosis with normal anion gap, hypokalemia, hypercalciuria, hypocitraturia, nephrocalcinosis, and conserved glomerular filtration rate. In some cases, neurosensorial deafness is associated. dRTA is developed during the first months of life and the main manifestations are failure to thrive, vomiting, dehydration, and anorexia.

Methods: Nine unrelated families were studied: seven children, a teenager, and an adult with dRTA. Hearing was preserved in four children. Coding regions of the genes responsible for recessive dRTA were analysed by Sanger sequencing.

Results: Molecular defects were found in the genes ATP6V1B1 and ATP6V0A4. We identified three homozygous variants in ATP6V1B: a frameshift mutation (p.Ile386Hisfs*56), a nucleotide substitution in exon 10 (p.Pro346Arg), and a new splicing mutation in intron 5. Three patients were homozygous for one novel (p.Arg743Trp) and one known (p.Asp411Tyr) missense mutations in the ATP6V0A4 gene. Three patients were compound heterozygous: one proband displayed two novel mutations, the frameshift mutation p.Val52Metfs*25, and a large deletion of exons 18-21; two probands showed the missense mutation p.Asp411Tyr and as a second mutation, p.Arg194Ter and c.1691+2dup, respectively.

Conclusion: ATP6V0A4 and ATP6V1B1 genes were involved in recessive dRTA of Mexican families. All ATP6V1B1 mutations detected were homozygous and all patients developed sensorineural hearing loss (SNHL) early in infancy. ATP6V0A4 mutations were found in one infant and three children without SNHL, and in one teenager and one adult with SNHL confirming the phenotypic variability in this trait. The mutation p.Asp411Tyr detected in four Mexican families was due to a founder effect. Screening of these mutations could provide a rapid and valuable tool for diagnosis of dRTA in this population.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/mgg3.205DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4867564PMC
May 2016

Extracellular Cl(-) regulates human SO4 (2-)/anion exchanger SLC26A1 by altering pH sensitivity of anion transport.

Pflugers Arch 2016 08 29;468(8):1311-32. Epub 2016 Apr 29.

Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA.

Genetic deficiency of the SLC26A1 anion exchanger in mice is known to be associated with hyposulfatemia and hyperoxaluria with nephrolithiasis, but many aspects of human SLC26A1 function remain to be explored. We report here the functional characterization of human SLC26A1, a 4,4'-diisothiocyanato-2,2'-stilbenedisulfonic acid (DIDS)-sensitive, electroneutral sodium-independent anion exchanger transporting sulfate, oxalate, bicarbonate, thiosulfate, and (with divergent properties) chloride. Human SLC26A1-mediated anion exchange differs from that of its rodent orthologs in its stimulation by alkaline pHo and inhibition by acidic pHo but not pHi and in its failure to transport glyoxylate. SLC26A1-mediated transport of sulfate and oxalate is highly dependent on allosteric activation by extracellular chloride or non-substrate anions. Extracellular chloride stimulates apparent V max of human SLC26A1-mediated sulfate uptake by conferring a 2-log decrease in sensitivity to inhibition by extracellular protons, without changing transporter affinity for extracellular sulfate. In contrast to SLC26A1-mediated sulfate transport, SLC26A1-associated chloride transport is activated by acid pHo, shows reduced sensitivity to DIDS, and exhibits cation dependence of its DIDS-insensitive component. Human SLC26A1 resembles SLC26 paralogs in its inhibition by phorbol ester activation of protein kinase C (PKC), which differs in its undiminished polypeptide abundance at or near the oocyte surface. Mutation of SLC26A1 residues corresponding to candidate anion binding site-associated residues in avian SLC26A5/prestin altered anion transport in patterns resembling those of prestin. However, rare SLC26A1 polymorphic variants from a patient with renal Fanconi Syndrome and from a patient with nephrolithiasis/calcinosis exhibited no loss-of-function phenotypes consistent with disease pathogenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00424-016-1823-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4956541PMC
August 2016

Immunolocalization of hyperpolarization-activated cationic HCN1 and HCN3 channels in the rat nephron: regulation of HCN3 by potassium diets.

Histochem Cell Biol 2016 Jan 29;145(1):25-40. Epub 2015 Oct 29.

Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Mexico, DF, México.

Hyperpolarization-activated cationic and cyclic nucleotide-gated channels (HCN) comprise four homologous subunits (HCN1-HCN4). HCN channels are found in excitable and non-excitable tissues in mammals. We have previously shown that HCN2 may transport ammonium (NH4 (+)), besides sodium (Na(+)), in the rat distal nephron. In the present work, we identified HCN1 and HCN3 in the proximal tubule (PT) and HCN3 in the thick ascending limb of Henle (TALH) of the rat kidney. Immunoblot assays detected HCN1 (130 kDa) and HCN3 (90 KDa) and their truncated proteins C-terminal HCN1 (93 KDa) and N-terminal HCN3 (65 KDa) in enriched plasma membranes from cortex (CX) and outer medulla (OM), as well as in brush-border membrane vesicles. Immunofluorescence assays confirmed apical localization of HCN1 and HCN3 in the PT. HCN3 was also found at the basolateral membrane of TALH. We evaluated chronic changes in mineral dietary on HCN3 protein abundance. Animals were fed with three different diets: sodium-deficient (SD) diet, potassium-deficient (KD) diet, and high-potassium (HK) diet. Up-regulation of HCN3 was observed in OM by KD and in CX and OM by HK; the opposite effect occurred with the N-terminal truncated HCN3 in CX (KD) and OM (HK). SD diet did not produce any change. Since HCN channels activate with membrane hyperpolarization, our results suggest that HCN channels may play a role in the Na(+)-K(+)-ATPase activity, contributing to Na(+), K(+), and acid-base homeostasis in the rat kidney.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00418-015-1375-6DOI Listing
January 2016

Differential expression of the Kv1 voltage-gated potassium channel family in the rat nephron.

J Mol Histol 2014 Oct 20;45(5):583-97. Epub 2014 Jun 20.

Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, México, DF, Mexico.

Several potassium (K(+)) channels contribute to maintaining the resting membrane potential of renal epithelial cells. Apart from buffering the cell membrane potential and cell volume, K(+) channels allow sodium reabsorption in the proximal tubule (PT), K(+) recycling and K(+) reabsorption in the thick ascending limb (TAL) and K(+) secretion and K(+) reabsorption in the distal convoluted tubule (DCT), connecting tubule (CNT) and collecting duct. Previously, we identified Kv.1.1, Kv1.3 and Kv1.6 channels in collecting ducts of the rat inner medulla. We also detected intracellular Kv1.3 channel in the acid secretory intercalated cells, which is trafficked to the apical membrane in response to dietary K(+) to function as a secretory K(+) channel. In this work we sought to characterize the expression of all members of the Kv1 family in the rat nephron. mRNA and protein expression were detected for all Kv1 channels. Immunoblots identified differential expression of each Kv1 in the cortex, outer and inner medulla. Immunofluorescence labeling detected Kv1.5 in Bowman´s capsule and endothelial cells and Kv1.7 in podocytes, endothelial cells and macula densa in glomeruli; Kv1.4, Kv1.5 and Kv1.7 in PT; Kv1.2, Kv1.4 and Kv1.6 in TAL; Kv1.1, Kv1.4 and Kv1.6 in DCT and CNT and Kv1.3 in DCT, and all the Kv1 family in the cortical and medullary collecting ducts. Recently, some hereditary renal syndromes have been attributed to mutations in K(+) channels. Our results expand the repertoire of K(+) channels that contribute to K(+) homeostasis to include the Kv1 family.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10735-014-9581-4DOI Listing
October 2014

The polarization of the G-protein activated potassium channel GIRK5 to the vegetal pole of Xenopus laevis oocytes is driven by a di-leucine motif.

PLoS One 2013 22;8(5):e64096. Epub 2013 May 22.

Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México.

The G protein-coupled inwardly-rectifying potassium channels (known as GIRK or Kir3) form functional heterotetramers gated by G-βγ subunits. GIRK channels participate in heart rate modulation and neuronal postsynaptic inhibition in mammals. In Xenopus laevis oocytes, GIRK5 is a functional homomultimer. Previously, we found that phosphorylation of a tyrosine (Y16) at its N-terminus downregulates the surface expression of GIRK5. In this work, we elucidated the subcellular localization and trafficking of GIRK5 in oocytes. Several EGFP-GIRK5 chimeras were produced and an ECFP construct was used to identify the endoplasmic reticulum (ER). Whereas GIRK5-WT was retained in the ER at the animal pole, the phospho-null GIRK5-Y16A was localized to the vegetal pole. Interestingly, a construct with an N-terminal Δ25 deletion produced an even distribution of the channel in the whole oocyte. Through an alanine-scan, we identified an acidic cluster/di-leucine sorting-signal recognition motif between E17 and I22. We quantified the effect of each amino acid residue within this di-leucine motif in determining the distribution of GIRK5 to the animal and vegetal poles. We found that Y16 and I22 contributed to functional expression and were dominant in the polarization of GIRK5. We thus conclude that the N-terminal acidic di-leucine motif of GIRK5 determines its retention and polarized trafficking within Xl oocytes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0064096PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3661522PMC
April 2014

The hyperpolarization-activated cyclic nucleotide-gated HCN2 channel transports ammonium in the distal nephron.

Kidney Int 2011 Oct 27;80(8):832-40. Epub 2011 Jul 27.

Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México DF, México.

Recent studies have identified Rhesus proteins as important molecules for ammonia transport in acid-secreting intercalated cells in the distal nephron. Here, we provide evidence for an additional molecule that can mediate NH3/NH4 excretion, the subtype 2 of the hyperpolarization-activated cyclic nucleotide-gated channel family (HCN2), in collecting ducts in rat renal cortex and medulla. Chronic metabolic acidosis in rats did not alter HCN2 protein expression but downregulated the relative abundance of HCN2 mRNA. Its cDNA was identical to the homolog from the brain and the protein was post-translationally modified by N-type glycosylation. Electrophysiological recordings in Xenopus oocytes injected with HCN2 cRNA found that potassium was transported better than ammonium, each of which was transported significantly better than sodium, criteria that are compatible with a role for HCN2 in ammonium transport. In microperfused rat outer medullary collecting duct segments, the initial rate of acidification, upon exposure to a basolateral ammonium chloride pulse, was higher in intercalated than in principal cells. A specific inhibitor of HCN2 (ZD7288) decreased acidification only in intercalated cells from control rats. In rats with chronic metabolic acidosis, the rate of acidification doubled in both intercalated and principal cells; however, ZD7288 had no significant inhibitory effect. Thus, HCN2 is a basolateral ammonium transport pathway of intercalated cells and may contribute to the renal regulation of body pH under basal conditions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ki.2011.230DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3752342PMC
October 2011

Potassium secretion by voltage-gated potassium channel Kv1.3 in the rat kidney.

Am J Physiol Renal Physiol 2010 Jul 28;299(1):F255-64. Epub 2010 Apr 28.

Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México.

The fine regulation of Na(+) and K(+) transport takes place in the cortical distal nephron. It is well established that K(+) secretion occurs through apical K(+) channels: the ROMK and the Ca(2+)- and voltage-dependent maxi-K. Previously, we identified the voltage-gated Kv1.3 channel in the inner medulla of the rat kidney (Escobar LI, Martínez-Téllez JC, Salas M, Castilla SA, Carrisoza R, Tapia D, Vázquez M, Bargas J, Bolívar JJ. Am J Physiol Cell Physiol 286: C965-C974, 2004). To examine the role of Kv1.3 in the renal regulation of K(+) homeostasis, we characterized the effect of dietary K(+) on the molecular and functional expression of this channel. We performed real-time-PCR and immunoblot assays in kidneys from rats fed a control (CK; 1.2% wt/wt) or high-K(+) (HK; 10% wt/wt) diet for 5-15 days. Kv1.3 mRNA and protein expression did not change with HK in the whole kidney. However, dietary K(+) loading provoked a change in the cellular distribution of Kv1.3 from the cytoplasm to apical membranes. Immunolocalization of Kv1.3 detected the channel exclusively in the intercalated cells. We investigated whether Kv1.3 mediated K(+) transport in microperfused cortical collecting ducts (CCDs). The HK diet led to an increase in net K(+) transport from 7.4 +/- 1.1 (CK) to 11.4 +/- 1.0 (HK) pmol x min(-1.) mm(-1). Luminal margatoxin, a specific blocker of Kv1.3, decreased net K(+) secretion in HK CCDs to 6.0 +/- 1.6 pmol x min(-1.) mm(-1). Our data provide the first evidence that Kv1.3 channels participate in K(+) secretion and that apical membrane localization of Kv1.3 is enhanced in the intercalated cells by dietary K(+) loading.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajprenal.00697.2009DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2904170PMC
July 2010

Peptide sr11a from Conus spurius is a novel peptide blocker for Kv1 potassium channels.

Peptides 2010 Jul 18;31(7):1287-91. Epub 2010 Apr 18.

Laboratorio de Neurofarmacología Marina, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro 76230, Mexico.

More than a hundred conotoxins are known today and from them, only seven conopeptides have been identified to target voltage-gated potassium channels (Kv). Conotoxin sr11a belongs to the I(2)-superfamily which is characterized by four disulfide bridges and provokes muscle stiffness when injected intracranially in mice. The aim of this work was to test the biological activity of sr11a on recombinant voltage-gated Kv1 potassium channels expressed in Xenopus laevis oocytes. Peptide sr11a was purified by high-performance liquid chromatography from the venom of the vermivorous Conus spurius. We found that peptide sr11a inhibits the delayed rectifiers Kv1.2 and Kv1.6 but had not effect on the slowly inactivating Kv1.3 channel. The functional dyad composed of a basic Lys and a hydrophobic amino acid residue is a crucial structural element, regarding the binding properties and blocking activities of more than a hundred K(+) channel toxins. Peptide sr11a does not contain Lys residues and then, it lacks the functional dyad. Molecular modeling of peptide sr11a reveals the presence of exposed basic residues of Arg and suggests that Arg17 and Arg29 are important on its biological activity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.peptides.2010.04.007DOI Listing
July 2010

Expression and immunolocalization of ERG1 potassium channels in the rat kidney.

Histochem Cell Biol 2010 Feb 17;133(2):189-99. Epub 2009 Nov 17.

Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico, DF, Mexico.

Potassium (K(+)) channels participate in K(+) secretion, K(+) recycling, and cell volume regulation and help to maintain the resting potential in mammalian kidneys. Previously, we identified a set of voltage-gated K(+) channels (Kv1) in the inner medullary collecting duct of the rat kidney. In the present work, we identified the voltage-gated K(+) channel ether-à-go-go-related gene (ERG) in the rat kidney. mRNAs of ERG1a and its N-terminal splice-variant ERG1b were detected. Immunoblots of the cortex and medulla revealed two molecular mass proteins of 135 and 80 kDa, consistent in size with the nonglycosylated ERG1a and ERG1b isoforms, respectively. However, bands of 155 and 95 kDa, corresponding to mature glycosylated ERG1a and ERG1b, respectively, were also observed. In our immunohistochemical experiments, we could not differentiate the ERG1 isoforms because we used an antibody against a carboxy-terminal epitope. ERG1 was differentially localized in specific nephron segments: its localization was intracellular in the proximal tubule and medullary collecting ducts and in the apical membranes in the distal convoluted and connecting tubules. ERG1 was also abundant in glomerular arterioles and renal vessels. In summary, ERG1 displays a heterogeneous distribution in the rat kidney.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00418-009-0658-1DOI Listing
February 2010

Phosphorylation of a tyrosine at the N-terminus regulates the surface expression of GIRK5 homomultimers.

FEBS Lett 2005 Jun;579(14):3019-23

Departamento de Fisiologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, 04510 Mexico, DF.

The G protein-coupled inwardly rectifying GIRK5 and Delta5GIRK5 splicing variants do not express functional potassium channels. In contrast, Delta25GIRK5 forms functional homomultimers in Xenopus laevis oocytes. A tyrosine is present at the N-term of the non-functional isoforms. We studied the effect of endogenous tyrosine phosphorylation on the GIRK5 surface and functional expression. Unlike wild type channels, GIRK5Y16A and Delta5GIRK5Y16A mutants displayed inwardly rectifying currents and inhibitors of Src tyrosine kinase promoted the traffiking of GIRK5 to the cell surface. This is the first evidence that endogenous phosphorylation of a tyrosine residue in a GIRK channel inhibits its surface expression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.febslet.2005.04.056DOI Listing
June 2005

A voltage-gated K(+) current in renal inner medullary collecting duct cells.

Am J Physiol Cell Physiol 2004 Apr 18;286(4):C965-74. Epub 2003 Dec 18.

Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México City DF, 04510, México.

We studied the K(+)-selective conductances in primary cultures of rat renal inner medullary collecting duct (IMCD) using perforated-patch and conventional whole cell techniques. Depolarizations above -20 mV induced a time-dependent outward K(+) current (I(vto)) similar to a delayed rectifier. I(vto) showed a half-maximal activation around 5.6 mV with a slope factor of 6.8 mV. Its K(+)/Na(+) selectivity ratio was 11.7. It was inhibited by tetraethylammonium, quinidine, 4-aminopyridine, and Ba(2+) and was not Ca(2+) dependent. The delayed rectifying characteristics of I(vto) prompted us to screen the expression of Kv1 and Kv3 families by RT-PCR. Analysis of RNA isolated from cell cultures revealed the presence of three Kv alpha-subunits (Kv1.1, Kv1.3, and Kv1.6). Western blot analysis with Kv alpha-subunit antibodies for Kv1.1 and Kv1.3 showed labeling of approximately 70-kDa proteins from inner medulla plasmatic and microsome membranes. Immunocytochemical analysis of cell culture and kidney inner medulla showed that Kv1.3 is colocalized with the Na(+)-K(+)-ATPase at the basolateral membrane, although it is also in the cytoplasm. This is the first evidence of recording, protein expression, and localization of a voltage-gated Kv1 in the kidney IMCD cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpcell.00074.2003DOI Listing
April 2004

Basal activity of GIRK5 isoforms.

Life Sci 2003 Feb;72(13):1509-18

Departamento de Fisiologi;a, Facultad de Medicina, UNAM, Apartado Postal 70-250, D.F., 04510, Mexico.

G protein-coupled inwardly rectifying K(+) channels (GIRK or Kir3) form functional heterotetramers gated by Gbetagamma subunits. GIRK channels are critical for functions as diverse as heart rate modulation and neuronal post-synaptic inhibition. GIRK5 (Kir3.5) is the oocyte homologue of the mammalian GIRK subunits that conform the K(ACh) channel. It has been claimed that even when the oocytes express GIRK5 proteins they do not form functional channels. However, the GIRK5 gene shows three initiation sites that suggest the existence of three isoforms. In a previous work we demonstrated the functionality of homomultimers of the shortest isoform overexpressed in the own oocytes. Remarkably, the basal GIRK5-Delta25 inward currents were not coupled to the activation of a G-protein receptor in the oocytes. These results encouraged us to study this channel in another expression system. In this work we show that Sf21 insect cells can be successfully transfected with this channel. GIRK5-Delta25 homomultimers produce time-dependent inward currents only with GTPgammaS in the recording pipette. Therefore, alternative modes of stimulus input to heterotrimeric G-proteins should be present in the oocytes to account for these results.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0024-3205(02)02447-5DOI Listing
February 2003