Publications by authors named "L C Zhang"

99,689 Publications

A strategy for interfering with the formation of thick cell walls in Haematococcus pluvialis by down-regulating the mannan synthesis pathway.

Bioresour Technol 2022 Aug 12:127783. Epub 2022 Aug 12.

CAS and Shandong Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Shandong Engineering Technology Collaborative Innovation Center of Edible Microalgae, Qingdao Langyatai Group Co., Ltd., Qingdao, 266400, China. Electronic address:

The challenges associated with effective cell wall disruption remain an important bottleneck that has restricted efforts to extract astaxanthin from Haematococcus pluvialis. Here, available transcriptomic data and an Agrobacterium tumefaciens-mediated transformation system were used to establish an H. pluvialis strain in which the key cell wall formation-related enzyme α-1,6-mannosyltransferase (HpOCH1) was downregulated in an effort to thin cell walls and thereby simplify the astaxanthin extraction process. The cell wall remodeling activity observed in these HpOch1 knockdown H. pluvialis cells resulted in dramatic reductions in the mannan organization and protective ability of the established cell walls. The cell fragmentation rate increased by 58% in HpOch1 group relative to the control group. Critically, astaxanthin synthesis was not altered in the HpOch1 knockdown cells. Overall, this study highlights a novel technical approach to artificial cell wall thinning, offering a foundation for further efforts to more effectively leverage the astaxanthin resources of H. pluvialis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2022.127783DOI Listing
August 2022

Therapeutic Evaluation of the Acinetobacter baumannii Phage Phab24 for Clinical Use.

Virus Res 2022 Aug 12:198889. Epub 2022 Aug 12.

Fraunhofer Institute for Cell Therapy and Immunology, Perlickstrasse 1, 04103 Leipzig, Germany. Electronic address:

Phages have shown to be effective in treating bacterial infections. However, when evaluating the therapeutic potential of novel phage isolates which have the ability to infect and kill a pathogen, it is important to include parameters such as stability (crucial for storage and delivery), infection dynamics in vitro and in vivo (for efficacy and dosing), and an in-depth genome analysis (to exclude the presence of virulence or lysogeny genes), among others. In this study, we characterized bacteriophage Phab24, which infects a colistin-resistant strain of the notorious nosocomial pathogen Acinetobacter baumannii. Our study is crucial for the use of Phab24 in therapy, while also advancing our understanding of phage predation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.virusres.2022.198889DOI Listing
August 2022

Lipopolysaccharide (LPS) increases susceptibility to epilepsy via interleukin-1 type 1 receptor signaling.

Brain Res 2022 Aug 12:148052. Epub 2022 Aug 12.

Laboratory Animal Center, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China. Electronic address:

Epilepsy is the most common disease of the nervous system, characterized by aberrant normal brain activity. Neuroinflammation is a prominent feature in the brain in epileptic humans and animal models of epilepsy. However, it remains elusive as to how peripheral inflammation affects epilepsy. Herein we demonstrated significantly greater seizure susceptibility and severity of epilepsy under kainic acid (KA) via intraperitoneal (i.p.) injection of lipopolysaccharide (LPS) in mouse model of epilepsy. Nissl staining was employed for assessment of the neuronal damage, immunofluorescence for staining of the microglial cells and astrocytes in the mouse brain slices, and ELISA for detection of the changes of inflammatory factors. We observed a smaller population of viable neurons in CA1 and CA3 regions, a greater population of IBA-1-positive and GFAP-positive cells, with a significant upregulation of IL-1β and IL-6 in hippocampus of epileptic mice when treated with LPS, indicating that LPS aggravates hippocampal neuron injury in epilepsy, and induces neuroinflammation in the hippocampus. In addition, we provide an evident increase in BrdU/DCX and Nestin cell populations in dentate gyrus (DG) in LPS-treated group, versus saline group on epileptic mouse model, which demonstrated LPS treatment enhanced hippocampal neurogenesis. In order to investigate whether interleukin-1 type 1 (IL-1R1) signaling is involved in this process, we adopted IL-1R1 globally restored mice (IL-1R1) as an IL-1R1 reporter to visualize labeling of IL-1R1 mRNA and protein by means of RFP staining. Strikingly, the RFP immunofluorescence revealed increased IL-1R1 expression in LPS-treated group, versus saline group. Further, blockage of central IL-1R1 alleviated seizure susceptibility and severity of epilepsy. In summary, our findings suggested that LPS could enhance central inflammatory response and aggravate the susceptibility to epileptic seizure, which we postulated to be mediated by IL-1R1.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2022.148052DOI Listing
August 2022

Efficient bioelectricity generation and carbazole biodegradation using an electrochemically active bacterium Sphingobium yanoikuyae XLDN2-5.

Chemosphere 2022 Aug 12:135986. Epub 2022 Aug 12.

State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China. Electronic address:

Carbazole and its derivatives are polycyclic aromatic heterocycles with unusual toxicity and mutagenicity. However, disposal of these polycyclic aromatic heterocycles remains a significant challenge. This study focused on efficient resource recovery from carbazole using an obligate aerobe, Sphingobium yanoikuyae XLDN2-5, in microbial fuel cells (MFCs). S. yanoikuyae XLDN2-5 successfully achieved carbazole degradation and simultaneously electricity generation in MFCs with a maximum power density of 496.8 mW m and carbazole degradation rate of 100%. It is the first time that S. yanoikuyae XLDN2-5 was discovered as an electrochemically active bacterium with high extracellular electron transfer (EET) capability. Redox mediator analysis indicated that no self-produced redox mediators were found for S. yanoikuyae XLDN2-5 under analysis conditions, and the exogenous redox mediators used in this study did not promote its EET. The nanowires produced by S. yanoikuyae XLDN2-5 cells were found in the biofilm by morphology characterization and the growth process of the nanowires was consistent with the discharge process of the MFC. Conductivity determination further verified that the nanowires produced by S. yanoikuyae XLDN2-5 cells were electrically conductive. Based on these results, it is speculated that S. yanoikuyae XLDN2-5 may mainly utilize conductive nanowires produced by itself rather than redox mediators to meet the requirements of normal energy metabolism when it grows in the low dissolved oxygen zone of the anodic biofilm. These novel findings on the EET mechanism of S. yanoikuyae XLDN2-5 lay a foundation for further exploration of polycyclic aromatic heterocyclic pollutants treatment in electrochemical devices, which may create new biotechnology processes for these pollutants control.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.135986DOI Listing
August 2022

YY1/ITGA3 pathway may affect trophoblastic cells migration and invasion ability.

J Reprod Immunol 2022 Jul 26;153:103666. Epub 2022 Jul 26.

Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China. Electronic address:

Recurrent spontaneous abortion (RSA) is a disturbing pregnancy disorder experienced by ~2.5% of women attempting to conceive. The pathogenesis of RSA is still unclear. Previous findings revealed that transcription factor YIN-YANG 1(YY1) was related to the pathogenesis of RSA by influence trophoblastic cell invasion ability. Present study aimed to investigate more specific molecular mechanism of YY1 playing in trophoblastic cells. In our research, RNA-seq and Chip-seq were used to find significant changed genes between si-YY1(Knock down of YY1) HTR-8/SVneo cells(n = 3) and HTR-8/SVneo cells(n = 3). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis results suggested that Integrins related pathway maybe necessary to biological functions of trophoblastic cells. Chip-seq dataset analysis results predict YY1 can regulate ITGA3/7 expression by binding to the promoter region of ITGA3/7. Furthermore, results from chip experiment, RT-PCR, Dual-luciferase reporter gene assay showed that YY1 was able to bind to the promoter region of ITGA3 and regulate ITGA3 mRNA and protein expression. However, ITGA7 could not be significant influenced by YY1. Besides, gene silencing experiment, Western blot and Immunofluorescence assay confirmed that both YY1 and ITGA3 can accelerate phosphorylation focal adhesion kinase and affect cytoskeleton formation in HTR-8/SVneo cells. In conclusion, YY1/ITGA3 play a critical role in trophoblast invasion ability by regulating cytoskeleton formation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jri.2022.103666DOI Listing
July 2022
-->