Publications by authors named "L Adrienne Cupples"

711 Publications

Whole-genome association analyses of sleep-disordered breathing phenotypes in the NHLBI TOPMed program.

Genome Med 2021 Aug 26;13(1):136. Epub 2021 Aug 26.

Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, 10461, USA.

Background: Sleep-disordered breathing is a common disorder associated with significant morbidity. The genetic architecture of sleep-disordered breathing remains poorly understood. Through the NHLBI Trans-Omics for Precision Medicine (TOPMed) program, we performed the first whole-genome sequence analysis of sleep-disordered breathing.

Methods: The study sample was comprised of 7988 individuals of diverse ancestry. Common-variant and pathway analyses included an additional 13,257 individuals. We examined five complementary traits describing different aspects of sleep-disordered breathing: the apnea-hypopnea index, average oxyhemoglobin desaturation per event, average and minimum oxyhemoglobin saturation across the sleep episode, and the percentage of sleep with oxyhemoglobin saturation < 90%. We adjusted for age, sex, BMI, study, and family structure using MMSKAT and EMMAX mixed linear model approaches. Additional bioinformatics analyses were performed with MetaXcan, GIGSEA, and ReMap.

Results: We identified a multi-ethnic set-based rare-variant association (p = 3.48 × 10) on chromosome X with ARMCX3. Additional rare-variant associations include ARMCX3-AS1, MRPS33, and C16orf90. Novel common-variant loci were identified in the NRG1 and SLC45A2 regions, and previously associated loci in the IL18RAP and ATP2B4 regions were associated with novel phenotypes. Transcription factor binding site enrichment identified associations with genes implicated with respiratory and craniofacial traits. Additional analyses identified significantly associated pathways.

Conclusions: We have identified the first gene-based rare-variant associations with objectively measured sleep-disordered breathing traits. Our results increase the understanding of the genetic architecture of sleep-disordered breathing and highlight associations in genes that modulate lung development, inflammation, respiratory rhythmogenesis, and HIF1A-mediated hypoxic response.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13073-021-00917-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8394596PMC
August 2021

BinomiRare: A robust test for association of a rare genetic variant with a binary outcome for mixed models and any case-control proportion.

HGG Adv 2021 Jul 12;2(3). Epub 2021 Jun 12.

Framingham Heart Study, Framingham, MA, USA.

Whole-genome sequencing (WGS) and whole-exome sequencing studies have become increasingly available and are being used to identify rare genetic variants associated with health and disease outcomes. Investigators routinely use mixed models to account for genetic relatedness or other clustering variables (e.g., family or household) when testing genetic associations. However, no existing tests of the association of a rare variant with a binary outcome in the presence of correlated data control the type 1 error where there are (1) few individuals harboring the rare allele, (2) a small proportion of cases relative to controls, and (3) covariates to adjust for. Here, we address all three issues in developing a framework for testing rare variant association with a binary trait in individuals harboring at least one risk allele. In this framework, we estimate outcome probabilities under the null hypothesis and then use them, within the individuals with at least one risk allele, to test variant associations. We extend the BinomiRare test, which was previously proposed for independent observations, and develop the Conway-Maxwell-Poisson (CMP) test and study their properties in simulations. We show that the BinomiRare test always controls the type 1 error, while the CMP test sometimes does not. We then use the BinomiRare test to test the association of rare genetic variants in target genes with small-vessel disease (SVD) stroke, short sleep, and venous thromboembolism (VTE), in whole-genome sequence data from the Trans-Omics for Precision Medicine (TOPMed) program.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.xhgg.2021.100040DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321319PMC
July 2021

ANNORE: Genetic fine mapping with functional annotation.

Hum Mol Genet 2021 Jul 24. Epub 2021 Jul 24.

Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA.

Genome-wide association studies (GWAS) have successfully identified loci of the human genome implicated in numerous complex traits. However, the limitations of this study design make it difficult to identify specific causal variants or biological mechanisms of association. We propose a novel method, AnnoRE, which uses GWAS summary statistics, local correlation structure among genotypes, and functional annotation from external databases to prioritize the most plausible causal SNPs in each trait-associated locus. Our proposed method improves upon previous fine mapping approaches by estimating the effects of functional annotation from genome-wide summary statistics, allowing for the inclusion of many annotation categories. By implementing a multiple regression model with differential shrinkage via random effects, we avoid reductive assumptions on the number of causal SNPs per locus. Application of this method to a large GWAS meta-analysis of body mass index identified six loci with significant evidence in favor of one or more variants. In an additional 24 loci, one or two variants were strongly prioritized over others in the region. The use of functional annotation in genetic fine mapping studies helps to distinguish between variants in high LD, and to identify promising targets for follow-up studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddab210DOI Listing
July 2021

Orthographic Facilitation of Oral Vocabulary Acquisition in Children With Hearing Loss.

J Speech Lang Hear Res 2021 08 13;64(8):3127-3139. Epub 2021 Jul 13.

Department of Cognitive Science, Macquarie University, Sydney, New South Wales, Australia.

Purpose Learning spoken words can be challenging for children with hearing loss who communicate orally and who are known to have weaker oral vocabulary skills than age-matched children who hear. Since vocabulary skills play a crucial role in reading and literacy acquisition, and academic success, it is important to identify effective vocabulary acquisition strategies for children with hearing loss. The aim of this study was to examine whether the incidental presence of orthography can facilitate oral vocabulary learning in children with hearing loss and whether the benefits are greater than those found in hearing children. Method We taught novel picture-word pairs with or without spellings to 23 children with hearing loss and 23 age-matched controls, ranging in age from 6 to 12 years. Word learning was assessed using behavioral and eye tracking data from picture naming and picture-word matching tasks. Results and Conclusions Results revealed an orthographic facilitation effect on oral vocabulary learning in children with hearing loss, with benefits being maintained over a week. Importantly, children with hearing loss showed a greater benefit of orthography than age-matched hearing peers on the picture naming tests. The results of this study have important implications for classroom instruction and vocabulary instruction strategies for children with hearing loss.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1044/2021_JSLHR-20-00660DOI Listing
August 2021

Identification of novel and rare variants associated with handgrip strength using whole genome sequence data from the NHLBI Trans-Omics in Precision Medicine (TOPMed) Program.

PLoS One 2021 2;16(7):e0253611. Epub 2021 Jul 2.

Department of Biostatistics, Boston University School of Public Health, Boston, MA, United States of America.

Handgrip strength is a widely used measure of muscle strength and a predictor of a range of morbidities including cardiovascular diseases and all-cause mortality. Previous genome-wide association studies of handgrip strength have focused on common variants primarily in persons of European descent. We aimed to identify rare and ancestry-specific genetic variants associated with handgrip strength by conducting whole-genome sequence association analyses using 13,552 participants from six studies representing diverse population groups from the Trans-Omics in Precision Medicine (TOPMed) Program. By leveraging multiple handgrip strength measures performed in study participants over time, we increased our effective sample size by 7-12%. Single-variant analyses identified ten handgrip strength loci among African-Americans: four rare variants, five low-frequency variants, and one common variant. One significant and four suggestive genes were identified associated with handgrip strength when aggregating rare and functional variants; all associations were ancestry-specific. We additionally leveraged the different ancestries available in the UK Biobank to further explore the ancestry-specific association signals from the single-variant association analyses. In conclusion, our study identified 11 new loci associated with handgrip strength with rare and/or ancestry-specific genetic variations, highlighting the added value of whole-genome sequencing in diverse samples. Several of the associations identified using single-variant or aggregate analyses lie in genes with a function relevant to the brain or muscle or were reported to be associated with muscle or age-related traits. Further studies in samples with sequence data and diverse ancestries are needed to confirm these findings.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0253611PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8253404PMC
July 2021
-->