Publications by authors named "Kylee J Duberstein"

6 Publications

  • Page 1 of 1

Intracisternal administration of tanshinone IIA-loaded nanoparticles leads to reduced tissue injury and functional deficits in a porcine model of ischemic stroke.

IBRO Neurosci Rep 2021 Jun 5;10:18-30. Epub 2021 Jan 5.

Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, United States.

Background: The absolute number of new stroke patients is annually increasing and there still remains only a few Food and Drug Administration (FDA) approved treatments with significant limitations available to patients. Tanshinone IIA (Tan IIA) is a promising potential therapeutic for ischemic stroke that has shown success in pre-clinical rodent studies but lead to inconsistent efficacy results in human patients. The physical properties of Tan-IIA, including short half-life and low solubility, suggests that Poly (lactic-co-glycolic acid) (PLGA) nanoparticle-assisted delivery may lead to improve bioavailability and therapeutic efficacy. The objective of this study was to develop Tan IIA-loaded nanoparticles (Tan IIA-NPs) and to evaluate their therapeutic effects on cerebral pathological changes and consequent motor function deficits in a pig ischemic stroke model.

Results: Tan IIA-NP treated neural stem cells showed a reduction in SOD activity in in vitro assays demonstrating antioxidative effects. Ischemic stroke pigs treated with Tan IIA-NPs showed reduced hemispheric swelling when compared to vehicle only treated pigs (7.85 ± 1.41 vs. 16.83 ± 0.62%), consequent midline shift (MLS) (1.72 ± 0.07 vs. 2.91 ± 0.36 mm), and ischemic lesion volumes (9.54 ± 5.06 vs. 12.01 ± 0.17 cm) when compared to vehicle-only treated pigs. Treatment also lead to lower reductions in diffusivity (-37.30 ± 3.67 vs. -46.33 ± 0.73%) and white matter integrity (-19.66 ± 5.58 vs. -30.11 ± 1.19%) as well as reduced hemorrhage (0.85 ± 0.15 vs 2.91 ± 0.84 cm) 24 h post-ischemic stroke. In addition, Tan IIA-NPs led to a reduced percentage of circulating band neutrophils at 12 (7.75 ± 1.93 vs. 14.00 ± 1.73%) and 24 (4.25 ± 0.48 vs 5.75 ± 0.85%) hours post-stroke suggesting a mitigated inflammatory response. Moreover, spatiotemporal gait deficits including cadence, cycle time, step time, swing percent of cycle, stride length, and changes in relative mean pressure were less severe post-stroke in Tan IIA-NP treated pigs relative to control pigs.

Conclusion: The findings of this proof of concept study strongly suggest that administration of Tan IIA-NPs in the acute phase post-stroke mitigates neural injury likely through limiting free radical formation, thus leading to less severe gait deficits in a translational pig ischemic stroke model. With stroke as one of the leading causes of functional disability in the United States, and gait deficits being a major component, these promising results suggest that acute Tan IIA-NP administration may improve functional outcomes and the quality of life of many future stroke patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ibneur.2020.11.003DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8019951PMC
June 2021

Magnetic Resonance Imaging and Gait Analysis Indicate Similar Outcomes Between Yucatan and Landrace Porcine Ischemic Stroke Models.

Front Neurol 2020 21;11:594954. Epub 2021 Jan 21.

Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.

The Stroke Therapy Academic Industry Roundtable (STAIR) has recommended that novel therapeutics be tested in a large animal model with similar anatomy and physiology to humans. The pig is an attractive model due to similarities in brain size, organization, and composition relative to humans. However, multiple pig breeds have been used to study ischemic stroke with potentially differing cerebral anatomy, architecture and, consequently, ischemic stroke pathologies. The objective of this study was to characterize brain anatomy and assess spatiotemporal gait parameters in Yucatan (YC) and Landrace (LR) pigs pre- and post-stroke using magnetic resonance imaging (MRI) and gait analysis, respectively. Ischemic stroke was induced via permanent middle cerebral artery occlusion (MCAO). MRI was performed pre-stroke and 1-day post-stroke. Structural and diffusion-tensor sequences were performed at both timepoints and analyzed for cerebral characteristics, lesion diffusivity, and white matter changes. Spatiotemporal and relative pressure gait measurements were collected pre- and 2-days post-stroke to characterize and compare acute functional deficits. The results from this study demonstrated that YC and LR pigs exhibit differences in gross brain anatomy and gait patterns pre-stroke with MRI and gait analysis showing statistical differences in the majority of parameters. However, stroke pathologies in YC and LR pigs were highly comparable post-stroke for most evaluated MRI parameters, including lesion volume and diffusivity, hemisphere swelling, ventricle compression, caudal transtentorial and foramen magnum herniation, showing no statistical difference between the breeds. In addition, post-stroke changes in velocity, cycle time, swing percent, cadence, and mean hoof pressure showed no statistical difference between the breeds. These results indicate significant differences between pig breeds in brain size, anatomy, and motor function pre-stroke, yet both demonstrate comparable brain pathophysiology and motor outcomes post-stroke. The conclusions of this study suggest pigs of these different breeds generally show a similar ischemic stroke response and findings can be compared across porcine stroke studies that use different breeds.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fneur.2020.594954DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7859633PMC
January 2021

Form of Vitamin E Supplementation Affects Oxidative and Inflammatory Response in Exercising Horses.

J Equine Vet Sci 2020 08 29;91:103103. Epub 2020 Apr 29.

Department of Animal and Dairy Science, University of Georgia, Athens, GA.

Vitamin E is an essential antioxidant that may benefit athletes by reducing oxidative stress and influencing cytokine expression. Supplements can be derived from natural or manufactured synthetic sources. This study aimed to determine (1) if supplemental vitamin E is beneficial to exercising horses and (2) if there is a benefit of natural versus synthetic vitamin E. After 2 weeks on the control diet (vitamin E-deficient grain and hay), 18 horses were divided into three groups and fed the control diet plus (1) 1000 IU/d synthetic α-tocopherol (SYN-L), (2) 4000 IU/d synthetic α-tocopherol (SYN-H), or (3) 4000 IU/d RRR-α-tocopherol (natural source [NAT]). On day 7, horses began a 6-week training protocol, with standard exercise tests (SETs) performed before and after the 6-week protocol. Venous blood samples were collected on days 0, 7, 29, and 49. Horses fed NAT had higher α-tocopherol (P < .05) at post-SET1 through post-SET2. Plasma thiobarbituric acid-reactive substance levels were lower in NAT versus SYN-L horses after SET2 (P = .02). Serum aspartate aminotransferase was lower after exercise in NAT horses versus SYN-L and SYN-H (P = .02), and less reduction in stride duration was seen after exercise in NAT as compared with SYN-L and SYN-H (P = .02). Gene expression of tumor necrosis factor α was lower in NAT compared with SYN-H (P = .01) but not SYN-L. In conclusion, feeding higher levels of natural vitamin E source resulted in higher serum α-tocopherol levels as well as some improvement in oxidative and inflammatory response and improved functional outcomes in response to an exercise test.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jevs.2020.103103DOI Listing
August 2020

Characterization of tissue and functional deficits in a clinically translational pig model of acute ischemic stroke.

Brain Res 2020 06 16;1736:146778. Epub 2020 Mar 16.

Regenerative Bioscience Center, University of Georgia, Athens, GA, United States; Neuroscience Program, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, United States; Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States. Electronic address:

The acute stroke phase is a critical time frame used to evaluate stroke severity, therapeutic options, and prognosis while also serving as a major tool for the development of diagnostics. To further understand stroke pathophysiology and to enhance the development of treatments, our group developed a translational pig ischemic stroke model. In this study, the evolution of acute ischemic tissue damage, immune responses, and functional deficits were further characterized. Stroke was induced by middle cerebral artery occlusion in Landrace pigs. At 24 h post-stroke, magnetic resonance imaging revealed a decrease in ipsilateral diffusivity, an increase in hemispheric swelling resulting in notable midline shift, and intracerebral hemorrhage. Stroke negatively impacted white matter integrity with decreased fractional anisotropy values in the internal capsule. Like patients, pigs showed a reduction in circulating lymphocytes and a surge in neutrophils and band cells. Functional responses corresponded with structural changes through reductions in open field exploration and impairments in spatiotemporal gait parameters. Characterization of acute ischemic stroke in pigs provided important insights into tissue and functional-level assessments that could be used to identify potential biomarkers and improve preclinical testing of novel therapeutics.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2020.146778DOI Listing
June 2020

Controlled Cortical Impact Leads to Cognitive and Motor Function Deficits that Correspond to Cellular Pathology in a Piglet Traumatic Brain Injury Model.

J Neurotrauma 2019 10 17;36(19):2810-2826. Epub 2019 Jun 17.

Regenerative Bioscience Center, University of Georgia, Athens, Georgia.

Traumatic brain injury (TBI) is a leading cause of death and disability in the United States, with children who sustain a TBI having a greater risk of developing long-lasting cognitive, behavioral, and motor function deficits. This has led to increased interest in utilizing large animal models to study pathophysiologic and functional changes after injury in hopes of identifying novel therapeutic targets. In the present study, a controlled cortical impact (CCI) piglet TBI model was utilized to evaluate cognitive, motor, and histopathologic outcomes. CCI injury (4 m/sec velocity, 9 mm depression, 400 msec dwell time) was induced at the parietal cortex. Compared with normal pigs ( = 5), TBI pigs ( = 5) exhibited appreciable cognitive deficiencies, including significantly impaired spatial memory in spatial T-maze testing and a significant decrease in exploratory behaviors followed by marked hyperactivity in open field testing. Additionally, gait analysis revealed significant increases in cycle time and stance percent, significant decreases in hind reach, and a shift in the total pressure index from the front to the hind limb on the affected side, suggesting TBI impairs gait and balance. Pigs were sacrificed 28 days post-TBI and histological analysis revealed that TBI lead to a significant decrease in neurons and a significant increase in microglia activation and astrogliosis/astrocytosis at the perilesional area, a significant loss in neurons at the dorsal hippocampus, and significantly increased neuroblast proliferation at the subventricular zone. These data demonstrate a strong relationship between TBI-induced cellular changes and functional outcomes in our piglet TBI model that lay the framework for future studies that assess the ability of therapeutic interventions to contribute to functional improvements.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1089/neu.2019.6405DOI Listing
October 2019

Traumatic Brain Injury Results in Dynamic Brain Structure Changes Leading to Acute and Chronic Motor Function Deficits in a Pediatric Piglet Model.

J Neurotrauma 2019 10 17;36(20):2930-2942. Epub 2019 Jun 17.

Regenerative Bioscience Center, University of Georgia, Athens, Georgia.

Traumatic brain injury (TBI) is a leading cause of death and disability in children. Pediatric TBI patients often suffer from crippling cognitive, emotional, and motor function deficits that have negative lifelong effects. The objective of this study was to longitudinally assess TBI pathophysiology using multi-parametric magnetic resonance imaging (MRI), gait analysis, and histological approaches in a pediatric piglet model. TBI was produced by controlled cortical impact in Landrace piglets. MRI data, including from proton magnetic resonance spectroscopy (MRS), were collected 24 hours and 12 weeks post-TBI, and gait analysis was performed at multiple time-points over 12 weeks post-TBI. A subset of animals was sacrificed 24 hours, 1 week, 4 weeks, and 12 weeks post-TBI for histological analysis. MRI results demonstrated that TBI led to a significant brain lesion and midline shift as well as microscopic tissue damage with altered brain diffusivity, decreased white matter integrity, and reduced cerebral blood flow. MRS showed a range of neurochemical changes after TBI. Histological analysis revealed neuronal loss, astrogliosis/astrocytosis, and microglia activation. Further, gait analysis showed transient impairments in cadence, cycle time, % stance, step length, and stride length, as well as long-term impairments in weight distribution after TBI. Taken together, this study illustrates the distinct time course of TBI pathoanatomic and functional responses up to 12 weeks post-TBI in a piglet TBI model. The study of TBI injury and recovery mechanisms, as well as the testing of therapeutics in this translational model, are likely to be more predictive of human responses and clinical outcomes compared to traditional small animal models.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1089/neu.2018.6303DOI Listing
October 2019