Publications by authors named "Kyle T Whiddon"

2 Publications

  • Page 1 of 1

Fluorescence-based analysis of the intracytoplasmic membranes of type I methanotrophs.

Microb Biotechnol 2019 09 1;12(5):1024-1033. Epub 2019 Jul 1.

Department of Chemistry, The University of Akron, Akron, OH, USA.

Most methanotrophic bacteria maintain intracytoplasmic membranes which house the methane-oxidizing enzyme, particulate methane monooxygenase. Previous studies have primarily used transmission electron microscopy or cryo-electron microscopy to look at the structure of these membranes or lipid extraction methods to determine the per cent of cell dry weight composed of lipids. We show an alternative approach using lipophilic membrane probes and other fluorescent dyes to assess the extent of intracytoplasmic membrane formation in living cells. This fluorescence method is sensitive enough to show not only the characteristic shift in intracytoplasmic membrane formation that is present when methanotrophs are grown with or without copper, but also differences in intracytoplasmic membrane levels at intermediate copper concentrations. This technique can also be employed to monitor dynamic intracytoplasmic membrane changes in the same cell in real time under changing growth conditions. We anticipate that this approach will be of use to researchers wishing to visualize intracytoplasmic membranes who may not have access to electron microscopes. It will also have the capability to relate membrane changes in individual living cells to other measurements by fluorescence labelling or other single-cell analysis methods.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/1751-7915.13458DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6680624PMC
September 2019

Synthesis, characterization, in vitro SAR and in vivo evaluation of N,N'bisnaphthylmethyl 2-alkyl substituted imidazolium salts against NSCLC.

Bioorg Med Chem Lett 2017 02 16;27(4):764-775. Epub 2017 Jan 16.

Department of Chemistry, University of Akron, Akron, OH 44325, United States. Electronic address:

Alkyl- and N,N'-bisnaphthyl-substituted imidazolium salts were tested in vitro for their anti-cancer activity against four non-small cell lung cancer cell lines (NCI-H460, NCI-H1975, HCC827, A549). All compounds had potent anticancer activity with 2 having IC values in the nanomolar range for three of the four cell lines, a 17-fold increase in activity against NCI-H1975 cells when compared to cisplatin. Compounds 1-4 also showed high anti-cancer activity against nine NSCLC cell lines in the NCI-60 human tumor cell line screen. In vitro studies performed using the Annexin V and JC-1 assays suggested that NCI-H460 cells treated with 2 undergo an apoptotic cell death pathway and that mitochondria could be the cellular target of 2 with the mechanism of action possibly related to a disruption of the mitochondrial membrane potential. The water solubilities of 1-4 was over 4.4mg/mL using 2-hydroxypropyl-β-cyclodextrin as a chemical excipient, thereby providing sufficient solubility for systemic administration.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2017.01.035DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5575737PMC
February 2017