Publications by authors named "Kristy G Kuplast"

3 Publications

  • Page 1 of 1

Structure and Property Guided Design in the Identification of PRMT5 Tool Compound EPZ015666.

ACS Med Chem Lett 2016 Feb 2;7(2):162-6. Epub 2015 Dec 2.

Epizyme, Inc. , 400 Technology Square, Cambridge, Massachusetts 02139, United States.

The recent publication of a potent and selective inhibitor of protein methyltransferase 5 (PRMT5) provides the scientific community with in vivo-active tool compound EPZ015666 (GSK3235025) to probe the underlying pharmacology of this key enzyme. Herein, we report the design and optimization strategies employed on an initial hit compound with poor in vitro clearance to yield in vivo tool compound EPZ015666 and an additional potent in vitro tool molecule EPZ015866 (GSK3203591).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsmedchemlett.5b00380DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4753547PMC
February 2016

A selective inhibitor of PRMT5 with in vivo and in vitro potency in MCL models.

Nat Chem Biol 2015 Jun 27;11(6):432-7. Epub 2015 Apr 27.

Departments of Biology and Molecular Discovery, Epizyme, Inc., Cambridge, Massachusetts, USA.

Protein arginine methyltransferase-5 (PRMT5) is reported to have a role in diverse cellular processes, including tumorigenesis, and its overexpression is observed in cell lines and primary patient samples derived from lymphomas, particularly mantle cell lymphoma (MCL). Here we describe the identification and characterization of a potent and selective inhibitor of PRMT5 with antiproliferative effects in both in vitro and in vivo models of MCL. EPZ015666 (GSK3235025) is an orally available inhibitor of PRMT5 enzymatic activity in biochemical assays with a half-maximal inhibitory concentration (IC50) of 22 nM and broad selectivity against a panel of other histone methyltransferases. Treatment of MCL cell lines with EPZ015666 led to inhibition of SmD3 methylation and cell death, with IC50 values in the nanomolar range. Oral dosing with EPZ015666 demonstrated dose-dependent antitumor activity in multiple MCL xenograft models. EPZ015666 represents a validated chemical probe for further study of PRMT5 biology and arginine methylation in cancer and other diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nchembio.1810DOI Listing
June 2015

Calsenilin interacts with transcriptional co-repressor C-terminal binding protein(s).

J Neurochem 2006 Aug 19;98(4):1290-301. Epub 2006 Jun 19.

Department of Neurology, Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease and Harvard Medical School, Charlestown, Massachusetts 02129, USA.

Calsenilin/potassium channel-interacting protein (KChIP)3/ downstream regulatory element sequence antagonist modulator (DREAM) is a neuronal calcium-binding protein that has been shown to have multiple functions in the cell, including the regulation of presenilin processing, repression of transcription and modulation of A-type potassium channels. To gain a better understanding of the precise role of calsenilin in specific cellular compartments, an interactor hunt for proteins that bind to the N-terminal domain of calsenilin was carried out. Using a yeast two-hybrid system and co-immunoprecipitation studies, we have identified the transcriptional co-repressor C-terminal binding protein (CtBP)2 as an interactor for calsenilin and have shown that the two proteins can interact in vivo. In co-immunoprecipitation studies, calsenilin also interacted with CtBP1, a CtBP2 homolog. Our data also showed a calsenilin-dependent increase in c-fos protein levels in CtBP knockout fibroblasts, suggesting that CtBP may modulate the transcriptional repression of c-fos by calsenilin. Furthermore, the finding that histone deacetylase protein and activity were associated with the calsenilin-CtBP immunocomplex suggests a mechanism by which calsenilin-CtBP may act to repress transcription. Finally, we demonstrated that calsenilin and CtBP are present in synaptic vesicles and can interact in vivo.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1471-4159.2006.03972.xDOI Listing
August 2006