Publications by authors named "Kristie I Aamodt"

4 Publications

  • Page 1 of 1

Coordinated interactions between endothelial cells and macrophages in the islet microenvironment promote β cell regeneration.

NPJ Regen Med 2021 Apr 6;6(1):22. Epub 2021 Apr 6.

Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA.

Endogenous β cell regeneration could alleviate diabetes, but proliferative stimuli within the islet microenvironment are incompletely understood. We previously found that β cell recovery following hypervascularization-induced β cell loss involves interactions with endothelial cells (ECs) and macrophages (MΦs). Here we show that proliferative ECs modulate MΦ infiltration and phenotype during β cell loss, and recruited MΦs are essential for β cell recovery. Furthermore, VEGFR2 inactivation in quiescent ECs accelerates islet vascular regression during β cell recovery and leads to increased β cell proliferation without changes in MΦ phenotype or number. Transcriptome analysis of β cells, ECs, and MΦs reveals that β cell proliferation coincides with elevated expression of extracellular matrix remodeling molecules and growth factors likely driving activation of proliferative signaling pathways in β cells. Collectively, these findings suggest a new β cell regeneration paradigm whereby coordinated interactions between intra-islet MΦs, ECs, and extracellular matrix mediate β cell self-renewal.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41536-021-00129-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8024255PMC
April 2021

Signals in the pancreatic islet microenvironment influence β-cell proliferation.

Diabetes Obes Metab 2017 09;19 Suppl 1:124-136

Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN.

The progressive loss of pancreatic β-cell mass that occurs in both type 1 and type 2 diabetes is a primary factor driving efforts to identify strategies for effectively increasing, enhancing or restoring β-cell mass. While factors that seem to influence β-cell proliferation in specific contexts have been described, reliable stimulation of human β-cell proliferation has remained a challenge. Importantly, β-cells exist in the context of a complex, integrated pancreatic islet microenvironment where they interact with other endocrine cells, vascular endothelial cells, extracellular matrix, neuronal projections and islet macrophages. This review highlights different components of the pancreatic microenvironment, and reviews what is known about how signaling that occurs between β-cells and these other components influences β-cell proliferation. Future efforts to further define the role of the pancreatic islet microenvironment on β-cell proliferation may lead to the development of successful approaches to increase or restore β-cell mass in diabetes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/dom.13031DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5679109PMC
September 2017

Interrupted Glucagon Signaling Reveals Hepatic α Cell Axis and Role for L-Glutamine in α Cell Proliferation.

Cell Metab 2017 Jun;25(6):1362-1373.e5

Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; VA Tennessee Valley Healthcare, Nashville, TN 37212, USA. Electronic address:

Decreasing glucagon action lowers the blood glucose and may be useful therapeutically for diabetes. However, interrupted glucagon signaling leads to α cell proliferation. To identify postulated hepatic-derived circulating factor(s) responsible for α cell proliferation, we used transcriptomics/proteomics/metabolomics in three models of interrupted glucagon signaling and found that proliferation of mouse, zebrafish, and human α cells was mTOR and FoxP transcription factor dependent. Changes in hepatic amino acid (AA) catabolism gene expression predicted the observed increase in circulating AAs. Mimicking these AA levels stimulated α cell proliferation in a newly developed in vitro assay with L-glutamine being a critical AA. α cell expression of the AA transporter Slc38a5 was markedly increased in mice with interrupted glucagon signaling and played a role in α cell proliferation. These results indicate a hepatic α islet cell axis where glucagon regulates serum AA availability and AAs, especially L-glutamine, regulate α cell proliferation and mass via mTOR-dependent nutrient sensing.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmet.2017.05.011DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5572896PMC
June 2017

Development of a reliable automated screening system to identify small molecules and biologics that promote human β-cell regeneration.

Am J Physiol Endocrinol Metab 2016 11 13;311(5):E859-E868. Epub 2016 Sep 13.

Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee.

Numerous compounds stimulate rodent β-cell proliferation; however, translating these findings to human β-cells remains a challenge. To examine human β-cell proliferation in response to such compounds, we developed a medium-throughput in vitro method of quantifying adult human β-cell proliferation markers. This method is based on high-content imaging of dispersed islet cells seeded in 384-well plates and automated cell counting that identifies fluorescently labeled β-cells with high specificity using both nuclear and cytoplasmic markers. β-Cells from each donor were assessed for their function and ability to enter the cell cycle by cotransduction with adenoviruses encoding cell cycle regulators cdk6 and cyclin D3. Using this approach, we tested 12 previously identified mitogens, including neurotransmitters, hormones, growth factors, and molecules, involved in adenosine and Tgf-1β signaling. Each compound was tested in a wide concentration range either in the presence of basal (5 mM) or high (11 mM) glucose. Treatment with the control compound harmine, a Dyrk1a inhibitor, led to a significant increase in Ki-67 β-cells, whereas treatment with other compounds had limited to no effect on human β-cell proliferation. This new scalable approach reduces the time and effort required for sensitive and specific evaluation of human β-cell proliferation, thus allowing for increased testing of candidate human β-cell mitogens.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpendo.00515.2015DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5130356PMC
November 2016
-->