Publications by authors named "Kristen Spitler"

3 Publications

  • Page 1 of 1

Tumor interferon signaling and suppressive myeloid cells are associated with CAR T-cell failure in large B-cell lymphoma.

Blood 2021 May;137(19):2621-2633

Department of Blood and Marrow Transplant and Cellular Immunotherapy.

Axicabtagene ciloleucel (axi-cel) is a chimeric antigen receptor (CAR) T-cell therapy for relapsed or refractory large B-cell lymphoma (LBCL). This study evaluated whether immune dysregulation, present before CAR T-cell therapy, was associated with treatment failure. Tumor expression of interferon (IFN) signaling, high blood levels of monocytic myeloid-derived suppressor cells (M-MDSCs), and high blood interleukin-6 and ferritin levels were each associated with a lack of durable response. Similar to other cancers, we found that in LBCL tumors, IFN signaling is associated with the expression of multiple checkpoint ligands, including programmed cell death-ligand 1, and these were higher in patients who lacked durable responses to CAR-T therapy. Moreover, tumor IFN signaling and blood M-MDSCs associated with decreased axi-cel expansion. Finally, patients with high tumor burden had higher immune dysregulation with increased serum inflammatory markers and tumor IFN signaling. These data support that immune dysregulation in LBCL promotes axi-cel resistance via multiple mechanistic programs: insufficient axi-cel expansion associated with both circulating M-MDSC and tumor IFN signaling, which also gives rise to expression of immune checkpoint ligands.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood.2020007445DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8120145PMC
May 2021

CD28 Costimulatory Domain-Targeted Mutations Enhance Chimeric Antigen Receptor T-cell Function.

Cancer Immunol Res 2021 01 13;9(1):62-74. Epub 2020 Nov 13.

Department of Blood and Marrow Transplant and Cellular Immunotherapy, Division of Clinical Science, H. Lee Moffitt Cancer Center, Tampa, Florida.

An obstacle to the development of chimeric antigen receptor (CAR) T cells is the limited understanding of CAR T-cell biology and the mechanisms behind their antitumor activity. We and others have shown that CARs with a CD28 costimulatory domain drive high T-cell activation, which leads to exhaustion and shortened persistence. This work led us to hypothesize that by incorporating null mutations of CD28 subdomains (YMNM, PRRP, or PYAP), we could optimize CAR T-cell costimulation and enhance function. , we found that mice given CAR T cells with only a PYAP CD28 endodomain had a significant survival advantage, with 100% of mice alive after 62 days compared with 50% for mice with an unmutated endodomain. We observed that mutant CAR T cells remained more sensitive to antigen after antigen and PD-L1 stimulation, as demonstrated by increased cytokine production. The mutant CAR T cells also had a reduction of exhaustion-related transcription factors and genes such as , and Our results demonstrated that CAR T cells with a mutant CD28 endodomain have better survival and function. This work allows for the development of enhanced CAR T-cell therapies by optimizing CAR T-cell costimulation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/2326-6066.CIR-20-0253DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7864379PMC
January 2021

Tumor Microenvironment Composition and Severe Cytokine Release Syndrome (CRS) Influence Toxicity in Patients with Large B-Cell Lymphoma Treated with Axicabtagene Ciloleucel.

Clin Cancer Res 2020 09 15;26(18):4823-4831. Epub 2020 Jul 15.

Department of Blood and Marrow Transplantation and Cellular Immunotherapy, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.

Purpose: One of the challenges of adoptive T-cell therapy is the development of immune-mediated toxicities including cytokine release syndrome (CRS) and neurotoxicity (NT). We aimed to identify factors that place patients at high risk of severe toxicity or treatment-related death in a cohort of 75 patients with large B-cell lymphoma treated with a standard of care CD19 targeted CAR T-cell product (axicabtagene ciloleucel).

Experimental Design: Serum cytokine and catecholamine levels were measured prior to lymphodepleting chemotherapy, on the day of CAR T infusion and daily thereafter while patients remained hospitalized. Tumor biopsies were taken within 1 month prior to CAR T infusion for evaluation of gene expression.

Results: We identified an association between pretreatment levels of IL6 and life-threatening CRS and NT. Because the risk of toxicity was related to pretreatment factors, we hypothesized that the tumor microenvironment (TME) may influence CAR T-cell toxicity. In pretreatment patient tumor biopsies, gene expression of myeloid markers was associated with higher toxicity.

Conclusions: These results suggest that a proinflammatory state and an unfavorable TME preemptively put patients at risk for toxicity after CAR T-cell therapy. Tailoring toxicity management strategies to patient risk may reduce morbidity and mortality.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-20-1434DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7501265PMC
September 2020