Publications by authors named "Kristel R van Eijk"

37 Publications

Cross-reactive probes on Illumina DNA methylation arrays: a large study on ALS shows that a cautionary approach is warranted in interpreting epigenome-wide association studies.

NAR Genom Bioinform 2020 Dec 17;2(4):lqaa105. Epub 2020 Dec 17.

Department of Neurology, UMC Utrecht Brain Center, 3584 CG, Utrecht, the Netherlands.

Illumina DNA methylation arrays are a widely used tool for performing genome-wide DNA methylation analyses. However, measurements obtained from these arrays may be affected by technical artefacts that result in spurious associations if left unchecked. Cross-reactivity represents one of the major challenges, meaning that probes may map to multiple regions in the genome. Although several studies have reported on this issue, few studies have empirically examined the impact of cross-reactivity in an epigenome-wide association study (EWAS). In this paper, we report on cross-reactivity issues that we discovered in a large EWAS on the presence of the repeat expansion in ALS patients. Specifically, we found that that the majority of the significant probes inadvertently cross-hybridized to the locus. Importantly, these probes were not flagged as cross-reactive in previous studies, leading to novel insights into the extent to which cross-reactivity can impact EWAS. Our findings are particularly relevant for epigenetic studies into diseases associated with repeat expansions and other types of structural variation. More generally however, considering that most spurious associations were not excluded based on pre-defined sets of cross-reactive probes, we believe that the presented data-driven flag and consider approach is relevant for any type of EWAS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/nargab/lqaa105DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7745769PMC
December 2020

Phenome-wide and genome-wide analyses of quality of life in schizophrenia.

BJPsych Open 2020 Dec 9;7(1):e13. Epub 2020 Dec 9.

Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; and Outpatient Second Opinion Clinic, GGNet, Warnsveld, The Netherlands.

Background: Schizophrenia negatively affects quality of life (QoL). A handful of variables from small studies have been reported to influence QoL in patients with schizophrenia, but a study comprehensively dissecting the genetic and non-genetic contributing factors to QoL in these patients is currently lacking.

Aims: We adopted a hypothesis-generating approach to assess the phenotypic and genotypic determinants of QoL in schizophrenia.

Method: The study population comprised 1119 patients with a psychotic disorder, 1979 relatives and 586 healthy controls. Using linear regression, we tested >100 independent demographic, cognitive and clinical phenotypes for their association with QoL in patients. We then performed genome-wide association analyses of QoL and examined the association between polygenic risk scores for schizophrenia, major depressive disorder and subjective well-being and QoL.

Results: We found nine phenotypes to be significantly and independently associated with QoL in patients, the most significant ones being negative (β = -1.17; s.e. 0.05; P = 1 × 10-83; r2 = 38%), depressive (β = -1.07; s.e. 0.05; P = 2 × 10-79; r2 = 36%) and emotional distress (β = -0.09; s.e. 0.01; P = 4 × 10-59, r2 = 25%) symptoms. Schizophrenia and subjective well-being polygenic risk scores, using various P-value thresholds, were significantly and consistently associated with QoL (lowest association P-value = 6.8 × 10-6). Several sensitivity analyses confirmed the results.

Conclusions: Various clinical phenotypes of schizophrenia, as well as schizophrenia and subjective well-being polygenic risk scores, are associated with QoL in patients with schizophrenia and their relatives. These may be targeted by clinicians to more easily identify vulnerable patients with schizophrenia for further social and clinical interventions to improve their QoL.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1192/bjo.2020.140DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7791571PMC
December 2020

Genome-wide association study of intracranial aneurysms identifies 17 risk loci and genetic overlap with clinical risk factors.

Nat Genet 2020 12 16;52(12):1303-1313. Epub 2020 Nov 16.

Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway.

Rupture of an intracranial aneurysm leads to subarachnoid hemorrhage, a severe type of stroke. To discover new risk loci and the genetic architecture of intracranial aneurysms, we performed a cross-ancestry, genome-wide association study in 10,754 cases and 306,882 controls of European and East Asian ancestry. We discovered 17 risk loci, 11 of which are new. We reveal a polygenic architecture and explain over half of the disease heritability. We show a high genetic correlation between ruptured and unruptured intracranial aneurysms. We also find a suggestive role for endothelial cells by using gene mapping and heritability enrichment. Drug-target enrichment shows pleiotropy between intracranial aneurysms and antiepileptic and sex hormone drugs, providing insights into intracranial aneurysm pathophysiology. Finally, genetic risks for smoking and high blood pressure, the two main clinical risk factors, play important roles in intracranial aneurysm risk, and drive most of the genetic correlation between intracranial aneurysms and other cerebrovascular traits.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-020-00725-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7116530PMC
December 2020

Association of Recent Stressful Life Events With Mental and Physical Health in the Context of Genomic and Exposomic Liability for Schizophrenia.

JAMA Psychiatry 2020 12;77(12):1296-1304

Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands.

Importance: Both adulthood stressful life events (SLEs) and liability for schizophrenia have been associated with poor mental and physical health in the general population, but their interaction remains to be elucidated to improve population-based health outcomes.

Objective: To test whether recent SLEs interact with genetic and environmental liability for schizophrenia in models of mental and physical health.

Design, Setting, And Participants: The Netherlands Mental Health Survey and Incidence Study-2 is a population-based prospective cohort study designed to investigate the prevalence, incidence, course, and consequences of mental disorders in the Dutch general population. Participants were enrolled from November 5, 2007, to July 31, 2009, and followed up with 3 assessments during 9 years. Follow-up was completed on June 19, 2018, and data were analyzed from September 1 to November 1, 2019.

Exposures: Recent SLEs assessed at each wave and aggregate scores of genetic and environmental liability for schizophrenia: polygenic risk score for schizophrenia (PRS-SCZ) trained using the Psychiatric Genomics Consortium analysis results and exposome score for schizophrenia (ES-SCZ) trained using an independent data set.

Main Outcomes And Measures: Independent and interacting associations of SLEs with ES-SCZ and PRS-SCZ on mental and physical health assessed at each wave using regression coefficients.

Results: Of the 6646 participants included at baseline, the mean (SD) age was 44.26 (12.54) years, and 3672 (55.25%) were female. The SLEs were associated with poorer physical health (B = -3.22 [95% CI, -3.66 to -2.79]) and mental health (B = -3.68 [95% CI, -4.05 to -3.32]). Genetic and environmental liability for schizophrenia was associated with poorer mental health (ES-SCZ: B = -3.07 [95% CI, -3.35 to -2.79]; PRS-SCZ: B = -0.93 [95% CI, -1.31 to -0.54]). Environmental liability was also associated with poorer physical health (B = -3.19 [95% CI, -3.56 to -2.82]). The interaction model showed that ES-SCZ moderated the association of SLEs with mental (B = -1.08 [95% CI, -1.47 to -0.69]) and physical health (B = -0.64 [95% CI, -1.11 to -0.17]), whereas PRS-SCZ did not. Several sensitivity analyses confirmed these results.

Conclusions And Relevance: In this study, schizophrenia liability was associated with broad mental health outcomes at the population level. Consistent with the diathesis-stress model, exposure to SLEs, particularly in individuals with high environmental liability for schizophrenia, was associated with poorer health. These findings underline the importance of modifiable environmental factors during the life span for population-based mental health outcomes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1001/jamapsychiatry.2020.2304DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7711318PMC
December 2020

The Distinct Traits of the UNC13A Polymorphism in Amyotrophic Lateral Sclerosis.

Ann Neurol 2020 10 20;88(4):796-806. Epub 2020 Jul 20.

Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.

Objective: The rs12608932 single nucleotide polymorphism in UNC13A is associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) susceptibility, and may underlie differences in treatment response. We aimed to characterize the clinical, cognitive, behavioral, and neuroimaging phenotype of UNC13A in patients with ALS.

Methods: We included 2,216 patients with ALS without a C9orf72 mutation to identify clinical characteristics associated with the UNC13A polymorphism. A subcohort of 428 patients with ALS was used to study cognitive and behavioral profiles, and 375 patients to study neuroimaging characteristics. Associations were analyzed under an additive genetic model.

Results: Genotyping rs12608932 resulted in 854 A/A, 988 A/C, and 374 C/C genotypes. The C allele was associated with a higher age at symptom onset (median years A/A 63.5, A/C 65.6, and C/C 65.5; p < 0.001), more frequent bulbar onset (A/A 29.6%, A/C 31.8%, and C/C 43.1%; p < 0.001), higher incidences of ALS-FTD (A/A 4.3%, A/C 5.2%, and C/C 9.5%; p = 0.003), lower forced vital capacity at diagnosis (median percentage A/A 92.0, A/C 90.0, and C/C 86.5; p < 0.001), and a shorter survival (median in months A/A 33.3, A.C 30.7, and C/C 26.6; p < 0.001). UNC13A was associated with lower scores on ALS-specific cognition tests (means A/A 79.5, A/C 78.1, and C/C 76.6; p = 0.037), and more frequent behavioral disturbances (A/A 16.7%, A/C 24.4%, and C/C 27.7%; p = 0.045). Thinner left inferior temporal and right fusiform cortex were associated with the UNC13A single nucleotide polymorphism (SNP; p = 0.045 and p = 0.036).

Interpretation: Phenotypical distinctions associated with UNC13A make it an important factor to take into account in clinical trial design, studies on cognition and behavior, and prognostic counseling. ANN NEUROL 2020;88:796-806.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ana.25841DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7540607PMC
October 2020

The role of rare compound heterozygous events in autism spectrum disorder.

Transl Psychiatry 2020 06 22;10(1):204. Epub 2020 Jun 22.

Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.

The identification of genetic variants underlying autism spectrum disorders (ASDs) may contribute to a better understanding of their underlying biology. To examine the possible role of a specific type of compound heterozygosity in ASD, namely, the occurrence of a deletion together with a functional nucleotide variant on the remaining allele, we sequenced 550 genes in 149 individuals with ASD and their deletion-transmitting parents. This approach allowed us to identify additional sequence variants occurring in the remaining allele of the deletion. Our main goal was to compare the rate of sequence variants in remaining alleles of deleted regions between probands and the deletion-transmitting parents. We also examined the predicted functional effect of the identified variants using Combined Annotation-Dependent Depletion (CADD) scores. The single nucleotide variant-deletion co-occurrence was observed in 13.4% of probands, compared with 8.1% of parents. The cumulative burden of sequence variants (n = 68) in pooled proband sequences was higher than the burden in pooled sequences from the deletion-transmitting parents (n = 41, X = 6.69, p = 0.0097). After filtering for those variants predicted to be most deleterious, we observed 21 of such variants in probands versus 8 in their deletion-transmitting parents (X = 5.82, p = 0.016). Finally, cumulative CADD scores conferred by these variants were significantly higher in probands than in deletion-transmitting parents (burden test, β = 0.13; p = 1.0 × 10). Our findings suggest that the compound heterozygosity described in the current study may be one of several mechanisms explaining variable penetrance of CNVs with known pathogenicity for ASD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41398-020-00866-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7308334PMC
June 2020

Association of preceding psychosis risk states and non-psychotic mental disorders with incidence of clinical psychosis in the general population: a prospective study in the NEMESIS-2 cohort.

World Psychiatry 2020 Jun;19(2):199-205

Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, The Netherlands.

The validity and clinical utility of the concept of "clinical high risk" (CHR) for psychosis have so far been investigated only in risk-enriched samples in clinical settings. In this population-based prospective study, we aimed - for the first time - to assess the incidence rate of clinical psychosis and es-timate the population attributable fraction (PAF) of that incidence for preceding psychosis risk states and DSM-IV diagnoses of non-psychotic mental disorders (mood disorders, anxiety disorders, alcohol use disorders, and drug use disorders). All analyses were adjusted for age, gender and education. The incidence rate of clinical psychosis was 63.0 per 100,000 person-years. The mutually-adjusted Cox proportional hazards model indicated that preceding diagnoses of mood disorders (hazard ratio, HR=10.67, 95% CI: 3.12-36.49), psychosis high-risk state (HR=7.86, 95% CI: 2.76-22.42) and drug use disorders (HR=5.33, 95% CI: 1.61-17.64) were associated with an increased risk for clinical psychosis incidence. Of the clinical psychosis incidence in the population, 85.5% (95% CI: 64.6-94.1) was attributable to prior psychopathology, with mood disorders (PAF=66.2, 95% CI: 33.4-82.9), psychosis high-risk state (PAF=36.9, 95% CI: 11.3-55.1), and drug use disorders (PAF=18.7, 95% CI: -0.9 to 34.6) as the most important factors. Although the psychosis high-risk state displayed a high relative risk for clinical psychosis outcome even after adjusting for other psychopathology, the PAF was comparatively low, given the low prevalence of psychosis high-risk states in the population. These findings provide empirical evidence for the "prevention paradox" of targeted CHR early intervention. A comprehensive prevention strategy with a focus on broader psychopathology may be more effective than the current psychosis-focused approach for achieving population-based improvements in prevention of psychotic disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/wps.20755DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7215054PMC
June 2020

Analysis of , , and as potential disease severity modifiers in spinal muscular atrophy.

Neurol Genet 2020 Feb 3;6(1):e386. Epub 2019 Jan 3.

Department of Neurology (R.I.W., M.D.J., C.A.D.C., E.J.N.G., M.S., C.A.W., J.M., P.S., K.R.E., W.R., J.H.V., L.H.B., W.L.P.), Brain Center Rudolf Magnus, University Medical Center Utrecht; Department of Pathology (M.M.H.H., J.K.), University Medical Center Utrecht; Department of Genetics (M.M.H.H.), University Medical Center Utrecht; and Department of Genetics (H.H.L.), University Medical Center Groningen, The Netherlands.

Objective: To investigate mutations in genes that are potential modifiers of spinal muscular atrophy (SMA) severity.

Methods: We performed a hypothesis-based search into the presence of variants in fused in sarcoma () transactive response DNA-binding protein 43 (), plastin 3 (), and profilin 2 () in a cohort of 153 patients with SMA types 1-4, including 19 families. Variants were detected with targeted next-generation sequencing and confirmed with Sanger sequencing. Functional effects of the identified variants were analyzed in silico and for PLS3, by analyzing expression levels in peripheral blood.

Results: We identified 2 exonic variants in exons 5 and 6 (p.R216C and p.S135N) in 2 unrelated patients, but clinical effects were not evident. We identified 8 intronic variants in in 33 patients. Five variants (c.1511+82T>C; c.748+130 G>A; c.367+182C>T; c.891-25T>C (rs145269469); c.1355+17A>G (rs150802596)) potentially alter exonic splice silencer or exonic splice enhancer sites. The variant c.367+182C>T, but not RNA expression levels, corresponded with a more severe phenotype in 1 family. However, this variant or level of PLS3 expression did not consistently correspond with a milder or more severe phenotype in other families or the overall cohort. We found 3 heterozygous, intronic variants in and with no correlation with clinical phenotype or effects on splicing.

Conclusions: and sequence variants do not modify SMA severity at the population level. Specific variants in individual patients or families do not consistently correlate with disease severity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1212/NXG.0000000000000386DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6975178PMC
February 2020

Human genetics and neuropathology suggest a link between miR-218 and amyotrophic lateral sclerosis pathophysiology.

Sci Transl Med 2019 12;11(523)

Project MinE ALS Sequencing Consortium.

Motor neuron-specific microRNA-218 (miR-218) has recently received attention because of its roles in mouse development. However, miR-218 relevance to human motor neuron disease was not yet explored. Here, we demonstrate by neuropathology that miR-218 is abundant in healthy human motor neurons. However, in amyotrophic lateral sclerosis (ALS) motor neurons, miR-218 is down-regulated and its mRNA targets are reciprocally up-regulated (derepressed). We further identify the potassium channel as a new miR-218 direct target that controls neuronal activity. In addition, we screened thousands of ALS genomes and identified six rare variants in the human miR-218-2 sequence. miR-218 gene variants fail to regulate neuron activity, suggesting the importance of this small endogenous RNA for neuronal robustness. The underlying mechanisms involve inhibition of miR-218 biogenesis and reduced processing by DICER. Therefore, miR-218 activity in motor neurons may be susceptible to failure in human ALS, suggesting that miR-218 may be a potential therapeutic target in motor neuron disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/scitranslmed.aav5264DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7057809PMC
December 2019

Associations of autozygosity with a broad range of human phenotypes.

Nat Commun 2019 10 31;10(1):4957. Epub 2019 Oct 31.

Department of Neurology, Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands.

In many species, the offspring of related parents suffer reduced reproductive success, a phenomenon known as inbreeding depression. In humans, the importance of this effect has remained unclear, partly because reproduction between close relatives is both rare and frequently associated with confounding social factors. Here, using genomic inbreeding coefficients (F) for >1.4 million individuals, we show that F is significantly associated (p < 0.0005) with apparently deleterious changes in 32 out of 100 traits analysed. These changes are associated with runs of homozygosity (ROH), but not with common variant homozygosity, suggesting that genetic variants associated with inbreeding depression are predominantly rare. The effect on fertility is striking: F equivalent to the offspring of first cousins is associated with a 55% decrease [95% CI 44-66%] in the odds of having children. Finally, the effects of F are confirmed within full-sibling pairs, where the variation in F is independent of all environmental confounding.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-019-12283-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6823371PMC
October 2019

Genetic architecture of subcortical brain structures in 38,851 individuals.

Nat Genet 2019 11 21;51(11):1624-1636. Epub 2019 Oct 21.

Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA.

Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-019-0511-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7055269PMC
November 2019

Pharmacogenetic interactions in amyotrophic lateral sclerosis: a step closer to a cure?

Pharmacogenomics J 2020 04 17;20(2):220-226. Epub 2019 Oct 17.

Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands.

Genetic mutations related to amyotrophic lateral sclerosis (ALS) act through distinct pathophysiological pathways, which may lead to varying treatment responses. Here we assess the genetic interaction between C9orf72, UNC13A, and MOBP with creatine and valproic acid treatment in two clinical trials. Genotypic data was available for 309 of the 338 participants (91.4%). The UNC13A genotype affected mortality (p = 0.012), whereas C9orf72 repeat-expansion carriers exhibited a faster rate of decline in overall (p = 0.051) and bulbar functioning (p = 0.005). A dose-response pharmacogenetic interaction was identified between creatine and the A allele of the MOBP genotype (p = 0.027), suggesting a qualitative interaction in a recessive model (HR 3.96, p = 0.015). Not taking genetic information into account may mask evidence of response to treatment or be an unrecognized source of bias. Incorporating genetic data could help investigators to identify critical treatment clues in patients with ALS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41397-019-0111-3DOI Listing
April 2020

A nonsynonymous mutation in PLCG2 reduces the risk of Alzheimer's disease, dementia with Lewy bodies and frontotemporal dementia, and increases the likelihood of longevity.

Acta Neuropathol 2019 08 27;138(2):237-250. Epub 2019 May 27.

Centro de Investigacion Biomedica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.

The genetic variant rs72824905-G (minor allele) in the PLCG2 gene was previously associated with a reduced Alzheimer's disease risk (AD). The role of PLCG2 in immune system signaling suggests it may also protect against other neurodegenerative diseases and possibly associates with longevity. We studied the effect of the rs72824905-G on seven neurodegenerative diseases and longevity, using 53,627 patients, 3,516 long-lived individuals and 149,290 study-matched controls. We replicated the association of rs72824905-G with reduced AD risk and we found an association with reduced risk of dementia with Lewy bodies (DLB) and frontotemporal dementia (FTD). We did not find evidence for an effect on Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS) risks, despite adequate sample sizes. Conversely, the rs72824905-G allele was associated with increased likelihood of longevity. By-proxy analyses in the UK Biobank supported the associations with both dementia and longevity. Concluding, rs72824905-G has a protective effect against multiple neurodegenerative diseases indicating shared aspects of disease etiology. Our findings merit studying the PLCγ2 pathway as drug-target.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00401-019-02026-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6660501PMC
August 2019

Exome array analysis of rare and low frequency variants in amyotrophic lateral sclerosis.

Sci Rep 2019 04 11;9(1):5931. Epub 2019 Apr 11.

Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands.

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that affects 1 in ~350 individuals. Genetic association studies have established ALS as a multifactorial disease with heritability estimated at ~61%, and recent studies show a prominent role for rare variation in its genetic architecture. To identify rare variants associated with disease onset we performed exome array genotyping in 4,244 cases and 3,106 controls from European cohorts. In this largest exome-wide study of rare variants in ALS to date, we performed single-variant association testing, gene-based burden, and exome-wide individual set-unique burden (ISUB) testing to identify single or aggregated rare variation that modifies disease risk. In single-variant testing no variants reached exome-wide significance, likely due to limited statistical power. Gene-based burden testing of rare non-synonymous and loss-of-function variants showed NEK1 as the top associated gene. ISUB analysis did not show an increased exome-wide burden of deleterious variants in patients, possibly suggesting a more region-specific role for rare variation. Complete summary statistics are released publicly. This study did not implicate new risk loci, emphasizing the immediate need for future large-scale collaborations in ALS that will expand available sample sizes, increase genome coverage, and improve our ability to detect rare variants associated to ALS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-019-42091-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6459905PMC
April 2019

Genetic vulnerability to schizophrenia is associated with cannabis use patterns during adolescence.

Drug Alcohol Depend 2018 09 30;190:143-150. Epub 2018 Jun 30.

Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands.

Background: Previously reported comorbidity between schizophrenia and substance use may be explained by shared underlying risk factors, such as genetic background. The aim of the present longitudinal study was to investigate how a genetic predisposition to schizophrenia was associated with patterns of substance use (cannabis use, smoking, alcohol use) during adolescence (comparing ages 13-16 with 16-20 years).

Method: Using piecewise latent growth curve modelling in a longitudinal adolescent cohort (RADAR-Y study, N = 372), we analyzed the association of polygenic risk scores for schizophrenia (PRS; p-value thresholds (p) < 5e-8 to p < 0.5) with increase in substance use over the years, including stratified analyses for gender. Significance thresholds were set to adjust for multiple testing using Bonferroni at p ≤ 0.001.

Results: High schizophrenia vulnerability was associated with a stronger increase in cannabis use at age 16-20 (PRS thresholds p < 5e-5 and p < 5e-4; p < 5e-6 was marginally significant), whereas more lenient PRS thresholds (PRS thresholds p < 5e-3 to p < 0.5) showed the reverse association. For smoking and alcohol, no clear relations were found.

Conclusions: In conclusion, our findings support a relation between genetic risk to schizophrenia and prospective cannabis use patterns during adolescence. In contrast, no relation between alcohol and smoking was established.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.drugalcdep.2018.05.024DOI Listing
September 2018

Genome-wide association meta-analysis of age at first cannabis use.

Addiction 2018 11 19;113(11):2073-2086. Epub 2018 Aug 19.

Brain and Mind Research Institute, University of Sydney, Sydney, NSW, Australia.

Background And Aims: Cannabis is one of the most commonly used substances among adolescents and young adults. Earlier age at cannabis initiation is linked to adverse life outcomes, including multi-substance use and dependence. This study estimated the heritability of age at first cannabis use and identified associations with genetic variants.

Methods: A twin-based heritability analysis using 8055 twins from three cohorts was performed. We then carried out a genome-wide association meta-analysis of age at first cannabis use in a discovery sample of 24 953 individuals from nine European, North American and Australian cohorts, and a replication sample of 3735 individuals.

Results: The twin-based heritability for age at first cannabis use was 38% [95% confidence interval (CI) = 19-60%]. Shared and unique environmental factors explained 39% (95% CI = 20-56%) and 22% (95% CI = 16-29%). The genome-wide association meta-analysis identified five single nucleotide polymorphisms (SNPs) on chromosome 16 within the calcium-transporting ATPase gene (ATP2C2) at P < 5E-08. All five SNPs are in high linkage disequilibrium (LD) (r  > 0.8), with the strongest association at the intronic variant rs1574587 (P = 4.09E-09). Gene-based tests of association identified the ATP2C2 gene on 16q24.1 (P = 1.33e-06). Although the five SNPs and ATP2C2 did not replicate, ATP2C2 has been associated with cocaine dependence in a previous study. ATP2B2, which is a member of the same calcium signalling pathway, has been associated previously with opioid dependence. SNP-based heritability for age at first cannabis use was non-significant.

Conclusion: Age at cannabis initiation appears to be moderately heritable in western countries, and individual differences in onset can be explained by separate but correlated genetic liabilities. The significant association between age of initiation and ATP2C2 is consistent with the role of calcium signalling mechanisms in substance use disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/add.14368DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7087375PMC
November 2018

Whole blood transcriptome analysis in amyotrophic lateral sclerosis: A biomarker study.

PLoS One 2018 25;13(6):e0198874. Epub 2018 Jun 25.

Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands.

The biological pathways involved in amyotrophic lateral sclerosis (ALS) remain elusive and diagnostic decision-making can be challenging. Gene expression studies are valuable in overcoming such challenges since they can shed light on differentially regulated pathways and may ultimately identify valuable biomarkers. This two-stage transcriptome-wide study, including 397 ALS patients and 645 control subjects, identified 2,943 differentially expressed transcripts predominantly involved in RNA binding and intracellular transport. When batch effects between the two stages were overcome, three different models (support vector machines, nearest shrunken centroids, and LASSO) discriminated ALS patients from control subjects in the validation stage with high accuracy. The models' accuracy reduced considerably when discriminating ALS from diseases that mimic ALS clinically (N = 75), nor could it predict survival. We here show that whole blood transcriptome profiles are able to reveal biological processes involved in ALS. Also, this study shows that using these profiles to differentiate between ALS and mimic syndromes will be challenging, even when taking batch effects in transcriptome data into account.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0198874PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6016933PMC
January 2019

Genome-wide Analyses Identify KIF5A as a Novel ALS Gene.

Neuron 2018 03;97(6):1268-1283.e6

Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy.

To identify novel genes associated with ALS, we undertook two lines of investigation. We carried out a genome-wide association study comparing 20,806 ALS cases and 59,804 controls. Independently, we performed a rare variant burden analysis comparing 1,138 index familial ALS cases and 19,494 controls. Through both approaches, we identified kinesin family member 5A (KIF5A) as a novel gene associated with ALS. Interestingly, mutations predominantly in the N-terminal motor domain of KIF5A are causative for two neurodegenerative diseases: hereditary spastic paraplegia (SPG10) and Charcot-Marie-Tooth type 2 (CMT2). In contrast, ALS-associated mutations are primarily located at the C-terminal cargo-binding tail domain and patients harboring loss-of-function mutations displayed an extended survival relative to typical ALS cases. Taken together, these results broaden the phenotype spectrum resulting from mutations in KIF5A and strengthen the role of cytoskeletal defects in the pathogenesis of ALS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuron.2018.02.027DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5867896PMC
March 2018

Genetic correlation between amyotrophic lateral sclerosis and schizophrenia.

Nat Commun 2017 03 21;8:14774. Epub 2017 Mar 21.

Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands.

We have previously shown higher-than-expected rates of schizophrenia in relatives of patients with amyotrophic lateral sclerosis (ALS), suggesting an aetiological relationship between the diseases. Here, we investigate the genetic relationship between ALS and schizophrenia using genome-wide association study data from over 100,000 unique individuals. Using linkage disequilibrium score regression, we estimate the genetic correlation between ALS and schizophrenia to be 14.3% (7.05-21.6; P=1 × 10) with schizophrenia polygenic risk scores explaining up to 0.12% of the variance in ALS (P=8.4 × 10). A modest increase in comorbidity of ALS and schizophrenia is expected given these findings (odds ratio 1.08-1.26) but this would require very large studies to observe epidemiologically. We identify five potential novel ALS-associated loci using conditional false discovery rate analysis. It is likely that shared neurobiological mechanisms between these two disorders will engender novel hypotheses in future preclinical and clinical studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncomms14774DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5364411PMC
March 2017

Novel genetic loci associated with hippocampal volume.

Nat Commun 2017 01 18;8:13624. Epub 2017 Jan 18.

Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808, USA.

The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r=-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncomms13624DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5253632PMC
January 2017

Novel genetic loci underlying human intracranial volume identified through genome-wide association.

Nat Neurosci 2016 12 3;19(12):1569-1582. Epub 2016 Oct 3.

Brain Center Rudolf Magnus, Department of Psychiatry, UMC Utrecht, Utrecht, the Netherlands.

Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five previously unknown loci for intracranial volume and confirmed two known signals. Four of the loci were also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (ρ = 0.748), which indicates a similar genetic background and allowed us to identify four additional loci through meta-analysis (N = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, and Parkinson's disease, and were enriched near genes involved in growth pathways, including PI3K-AKT signaling. These findings identify the biological underpinnings of intracranial volume and their link to physiological and pathological traits.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nn.4398DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5227112PMC
December 2016

Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis.

Nat Genet 2016 09 25;48(9):1043-8. Epub 2016 Jul 25.

Department of Molecular Genetics, Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.

To elucidate the genetic architecture of amyotrophic lateral sclerosis (ALS) and find associated loci, we assembled a custom imputation reference panel from whole-genome-sequenced patients with ALS and matched controls (n = 1,861). Through imputation and mixed-model association analysis in 12,577 cases and 23,475 controls, combined with 2,579 cases and 2,767 controls in an independent replication cohort, we fine-mapped a new risk locus on chromosome 21 and identified C21orf2 as a gene associated with ALS risk. In addition, we identified MOBP and SCFD1 as new associated risk loci. We established evidence of ALS being a complex genetic trait with a polygenic architecture. Furthermore, we estimated the SNP-based heritability at 8.5%, with a distinct and important role for low-frequency variants (frequency 1-10%). This study motivates the interrogation of larger samples with full genome coverage to identify rare causal variants that underpin ALS risk.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ng.3622DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5556360PMC
September 2016

NEK1 variants confer susceptibility to amyotrophic lateral sclerosis.

Nat Genet 2016 09 25;48(9):1037-42. Epub 2016 Jul 25.

Neurogenetics Group, Division of Brain Sciences, Imperial College London, London, UK.

To identify genetic factors contributing to amyotrophic lateral sclerosis (ALS), we conducted whole-exome analyses of 1,022 index familial ALS (FALS) cases and 7,315 controls. In a new screening strategy, we performed gene-burden analyses trained with established ALS genes and identified a significant association between loss-of-function (LOF) NEK1 variants and FALS risk. Independently, autozygosity mapping for an isolated community in the Netherlands identified a NEK1 p.Arg261His variant as a candidate risk factor. Replication analyses of sporadic ALS (SALS) cases and independent control cohorts confirmed significant disease association for both p.Arg261His (10,589 samples analyzed) and NEK1 LOF variants (3,362 samples analyzed). In total, we observed NEK1 risk variants in nearly 3% of ALS cases. NEK1 has been linked to several cellular functions, including cilia formation, DNA-damage response, microtubule stability, neuronal morphology and axonal polarity. Our results provide new and important insights into ALS etiopathogenesis and genetic etiology.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ng.3626DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5560030PMC
September 2016

DRD2 Schizophrenia-Risk Allele Is Associated With Impaired Striatal Functioning in Unaffected Siblings of Schizophrenia Patients.

Schizophr Bull 2016 May 23;42(3):843-50. Epub 2015 Nov 23.

Department of Psychiatry, University Medical Center Utrecht, Brain Center Rudolf Magnus, Utrecht, The Netherlands;

A recent Genome-Wide Association Study showed that the rs2514218 single nucleotide polymorphism (SNP) in close proximity to dopamine receptor D2 is strongly associated with schizophrenia. Further, an in silico experiment showed that rs2514218 has a cis expression quantitative trait locus effect in the basal ganglia. To date, however, the functional consequence of this SNP is unknown. Here, we used functional Magnetic resonance imaging to investigate the impact of this risk allele on striatal activation during proactive and reactive response inhibition in 45 unaffected siblings of schizophrenia patients. We included siblings to circumvent the illness specific confounds affecting striatal functioning independent from gene effects. Behavioral analyses revealed no differences between the carriers (n= 21) and noncarriers (n= 24). Risk allele carriers showed a diminished striatal response to increasing proactive inhibitory control demands, whereas overall level of striatal activation in carriers was elevated compared to noncarriers. Finally, risk allele carriers showed a blunted striatal response during successful reactive inhibition compared to the noncarriers. These data are consistent with earlier reports showing similar deficits in schizophrenia patients, and point to a failure to flexibly engage the striatum in response to contextual cues. This is the first study to demonstrate an association between impaired striatal functioning and the rs2514218 polymorphism. We take our findings to indicate that striatal functioning is impaired in carriers of the DRD2 risk allele, likely due to dopamine dysregulation at the DRD2 location.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/schbul/sbv166DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4838092PMC
May 2016

Common genetic variants influence human subcortical brain structures.

Nature 2015 Apr 21;520(7546):224-9. Epub 2015 Jan 21.

1] Department of Human Genetics, Radboud university medical center, Nijmegen 6500 HB, The Netherlands. [2] Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6500 GL, The Netherlands.

The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature14101DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4393366PMC
April 2015

Identification of schizophrenia-associated loci by combining DNA methylation and gene expression data from whole blood.

Eur J Hum Genet 2015 Aug 26;23(8):1106-10. Epub 2014 Nov 26.

1] Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands [2] UCLA Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles (UCLA), Los Angeles, CA, USA [3] Department of Human Genetics, University of California Los Angeles (UCLA), Los Angeles, CA, USA.

Emerging evidence suggests that schizophrenia (SZ) susceptibility involves variation at genetic, epigenetic and transcriptome levels. We describe an integrated approach that leverages DNA methylation and gene expression data to prioritize genetic variation involved in disease. DNA methylation levels were obtained from whole blood of 260 SZ patients and 250 unaffected controls of which a subset with gene expression data was available. By assessing DNA methylation and gene expression in cases and controls, we identified 432 CpG sites with differential methylation levels that are associated with differential gene expression. We hypothesized that genetic factors involved in these methylation levels may be associated with the genetic risk of SZ susceptibility. To test this hypothesis, we used results from the Psychiatric Genomics Consortium SZ genome-wide association study (GWAS). We observe an enrichment of SZ-associated SNPs in the mQTLs of which the associated CpG site is also correlated with differential gene expression in SZ. While this enrichment was already apparent when using nominal significant thresholds, enrichment was even more pronounced when applying more stringent significance levels. One locus, previously identified as susceptibility locus in a SZ GWAS, involves SNP rs11191514:C>T, which regulates DNA methylation of calcium homeostasis modulator 1 that is also associated with differential gene expression in patients. Overall, our results suggest that epigenetic variation plays an important role in SZ susceptibility and that the integration of analyses of genetic, epigenetic and gene expression profiles may be a biologically meaningful approach for identifying disease susceptibility loci, even when using whole blood data in studies of brain-related disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ejhg.2014.245DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4795100PMC
August 2015