Publications by authors named "Kodappully S Siveen"

26 Publications

  • Page 1 of 1

Protein arginine methyltransferase 5 (PRMT5) activates WNT/β-catenin signalling in breast cancer cells via epigenetic silencing of DKK1 and DKK3.

J Cell Mol Med 2021 Feb 18;25(3):1583-1600. Epub 2021 Jan 18.

Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar.

Protein arginine methyltransferase 5 (PRMT5) activity is dysregulated in many aggressive cancers and its enhanced levels are associated with increased tumour growth and survival. However, the role of PRMT5 in breast cancer remains underexplored. In this study, we show that PRMT5 is overexpressed in breast cancer cell lines, and that it promotes WNT/β-CATENIN proliferative signalling through epigenetic silencing of pathway antagonists, DKK1 and DKK3, leading to enhanced expression of c-MYC, CYCLIN D1 and SURVIVIN. Through chromatin immunoprecipitation (ChIP) studies, we found that PRMT5 binds to the promoter region of WNT antagonists, DKK1 and DKK3, and induces symmetric methylation of H3R8 and H4R3 histones. Our findings also show that PRMT5 inhibition using a specific small molecule inhibitor, compound 5 (CMP5), reduces PRMT5 recruitment as well as methylation of H3R8 and H4R3 histones in the promoter regions of DKK1 and DKK3, which consequently results in reduced expression CYCLIN D1 and SURVIVIN. Furthermore, CMP5 treatment either alone or in combination with 5-Azacytidine and Trichostatin A restored expression of DKK1 and DKK3 in TNBCs. PRMT5 inhibition also altered the growth characteristics of breast cancer cells and induced their death. Collectively, these results show that PRMT5 controls breast cancer cell growth through epigenetic silencing of WNT/β-CATENIN pathway antagonists, DKK1 and DKK3, resulting in up-regulation of WNT/β-CATENIN proliferative signalling.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/jcmm.16260DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7875925PMC
February 2021

TRPV2: A Cancer Biomarker and Potential Therapeutic Target.

Dis Markers 2020 10;2020:8892312. Epub 2020 Dec 10.

Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.

The Transient Receptor Potential Vanilloid type-2 (TRPV2) channel exhibits oncogenicity in different types of cancers. TRPV2 is implicated in signaling pathways that mediate cell survival, proliferation, and metastasis. In leukemia and bladder cancer, the oncogenic activity of TRPV2 was linked to alteration of its expression profile. In multiple myeloma patients, TRPV2 overexpression correlated with bone tissue damage and poor prognosis. In prostate cancer, TRPV2 overexpression was associated with the castration-resistant phenotype and metastasis. Loss or inactivation of TRPV2 promoted glioblastoma cell proliferation and increased resistance to CD95-induced apoptotic cell death. TRPV2 overexpression was associated with high relapse-free survival in triple-negative breast cancer, whereas the opposite was found in patients with esophageal squamous cell carcinoma or gastric cancer. Another link was found between TRPV2 expression and either drug-induced cytotoxicity or stemness of liver cancer. Overall, these findings validate TRPV2 as a prime candidate for cancer biomarker and future therapeutic target.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1155/2020/8892312DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7746447PMC
December 2020

Downregulation of Lymphoid enhancer-binding factor 1 (LEF-1) expression (by immunohistochemistry and/ flow cytometry) in chronic Lymphocytic Leukemia with atypical immunophenotypic and cytologic features.

Int J Lab Hematol 2020 Dec 12. Epub 2020 Dec 12.

Department of Laboratory Medicine and Pathology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar.

Introduction: Lymphoid enhancer-binding factor 1 (LEF-1) overexpression has been recently remarkably reported in chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) and has shown utility in distinguishing CLL/SLL from other B-cell lymphomas. CLL has a well-defined immunophenotype, yet, some cases of CLL demonstrate atypical morphology/ phenotype reflected by low Matutes score (atypical CLL). Till date, LEF1 expression has not been systematically studied in cases of CLL with atypical features.

Methods: In this study, LEF-1 expression was assessed by two different techniques, (immunohistochemistry and flow cytometry), to investigate the expression profile of LEF-1 in cases of CLL/SLL, in comparison with other low-grade B-lymphomas and CLL with atypical features, including atypical immunophenotype and CLL with increased prolymphocytes or morphologically atypical cells.

Results: We found that LEF-1 expression is downregulated in CLL with atypical immunophenotype/features compared to classic CLL; Chi-Square P < .0001. The ratio for LEF-1 expression in malignant B-cells/NK (by flow cytometry) in CLL/SLL with classic immunophenotype was higher than atypical CLL and is significantly higher in other small B-cell lymphomas (P < .01). Absence of LEF-1 expression in CLL/SLL is correlated (P < .05) with downregulation of CD5, CD23, CD200, expression of FMC7, brighter expression of CD79b, brighter expression of surface light chain, increased prolymphocytes and lower Matutes score.

Conclusion: As downregulation of LEF-1 expression is well correlated with atypical CLL, we suggest adding LEF-1 to Matutes score as a beneficial marker to differentiate classic from atypical CLL LEF-1 could also serve as a potential prognostic indicator for CLL clinical course.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/ijlh.13420DOI Listing
December 2020

Dysregulated Phosphorylation of p53, Autophagy and Stemness Attributes the Mutant p53 Harboring Colon Cancer Cells Impaired Sensitivity to Oxaliplatin.

Front Oncol 2020 28;10:1744. Epub 2020 Aug 28.

Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.

Colorectal cancer (CRC) forms one of the highest ranked cancer types in the world with its increasing incidence and mortality rates despite the advancement in cancer therapeutics. About 50% of human CRCs are reported to have defective p53 expression resultant of gene mutation often contributing to drug resistance. The current study was aimed to investigate the response of wild-type harboring HCT 116 and mutant harboring HT 29 colon cancer cells to chemotherapeutic drug oxaliplatin (OX) and to elucidate the underlying molecular mechanisms of sensitivity/resistance in correlation to their p53 status. OX inhibited growth of wild-type p53-harboring colon cancer cells via p53/p21-Bax mediated apoptosis. Our study revealed that dysregulated phosphorylation of p53, autophagy as well as cancer stemness attributes the mutant p53-harboring colon cancer cells impaired sensitivity to OX.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fonc.2020.01744DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7485421PMC
August 2020

Persistent anti-NY-ESO-1-specific T cells and expression of differential biomarkers in a patient with metastatic gastric cancer benefiting from combined radioimmunotherapy treatment: a case report.

J Immunother Cancer 2020 09;8(2)

Medical Oncology, National Center for Cancer Care and Research, Doha, Qatar

Combined radioimmunotherapy is currently being investigated to treat patients with cancer. Anti-programmed cell death-1 (PD-1) immunotherapy offers the prospect of long-term disease control in solid tumors. Radiotherapy has the ability to promote immunogenic cell death leading to the release of tumor antigens, increasing infiltration and activation of T cells. New York esophageal squamous cell carcinoma-1 (NY-ESO-1) is a cancer-testis antigen expressed in 20% of advanced gastric cancers and known to induce humoral and cellular immune responses in patients with cancer. We report on the dynamic immune response to the NY-ESO-1 antigen and important immune-related biomarkers in a patient with metastatic gastric cancer treated with radiotherapy combined with anti-PD-1 pembrolizumab antibody.Our patient was an 81-year-old man diagnosed with locally advanced unresectable mismatch repair-deficient gastric cancer having progressed to a metastatic state under a second line of systemic treatment consisting of an anti-PD-1 pembrolizumab antibody. The patient was subsequently treated with local radiotherapy administered concomitantly with anti-PD-1, with a complete response on follow-up radiologic assessment. Disease control was sustained with no further therapy for a period of 12 months before relapse. We have identified an NY-ESO-1-specific interferon-γ (IFN-γ) secretion from the patients' T cells that was significantly increased at response (****p˂0.0001). A novel promiscuous immunogenic NY-ESO-1 peptide P39 (P) restricted to the four patient's HLA-DQ and HLA-DP alleles was identified. Interestingly, this peptide contained the known NY-ESO-1-derived HLA-A2-02:01(P) immunogenic epitope. We have also identified a CD107 cytotoxic T cell subset within a specific CD8/HLA-A2-NY-ESO-1 T cell population that was low at disease progression, markedly increased at disease resolution and significantly decreased again at disease re-progression. Finally, we identified two groups of cytokines/chemokines. Group 1 contains five cytokines (IFN-γ, tumor necrosis factor-α, interleukin-2 (IL-2), IL-5 and IL-6) that were present at disease progression, significantly downregulated at disease resolution and dramatically upregulated again at disease re-progression. Group 2 contains four biomarkers (perforin, soluble FAS, macrophage inflammatory protein-3α and C-X-C motif chemokine 11/Interferon-inducible T Cell Alpha Chemoattractant that were present at disease progression, significantly upregulated at disease resolution and dramatically downregulated again at disease re-progression. Combined radioimmunotherapy can enhance specific T cell responses to the NY-ESO-1 antigen that correlates with beneficial clinical outcome of the patient.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/jitc-2020-001278DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7484873PMC
September 2020

Role of non-coding RNAs in the progression and resistance of cutaneous malignancies and autoimmune diseases.

Semin Cancer Biol 2020 Jul 25. Epub 2020 Jul 25.

Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Department of Medicine, Weill Cornell Medicine Qatar, Qatar Foundation-Education City, Doha 24144, Qatar; Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; College of Medicine, Qatar University, Doha 2713, Qatar.

Skin, the largest organ of human body, is vital for the existence and survival of human beings. Further, developmental and physiological mechanisms associated with cutaneous biology are vital for homeostasis as their deregulations converge towards pathogenesis of a number of skin diseases, including cancer. It has now been well accepted that most of the transcribed human genome lacks protein translational potential and has been termed as non-coding RNAs (nc-RNAs), which includes circular RNA (circRNA), small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), micro RNA (miRNA), long noncoding RNA (lncRNA), and piwi-interacting RNA (piRNAs). These nc-RNAs have gained great attention in both preclinical and clinical research as they are critical in most of the regulatory mechanisms of biological homeostasis and disease development by controlling the gene expression at transcriptional, post-transcriptional and epigenetic level. In this review we have illustrated how nc-RNAs are critical in the development and maintenance of cutaneous homeostasis and functioning and also, most importantly, how the dysregulated expression and functioning of nc-RNAs play critical role in the pathogenesis of cutaneous diseases including cancer and the autoimmune skin diseases. Considering the vital role of nc-RNAs in cancer resistance, metastasis and autoimmune diseases, we have also highlighted their role as promising prognostic and therapeutic targets for the cutaneous diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.semcancer.2020.07.003DOI Listing
July 2020

Sanguinarine Induces Apoptosis in Papillary Thyroid Cancer Cells via Generation of Reactive Oxygen Species.

Molecules 2020 Mar 9;25(5). Epub 2020 Mar 9.

Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar.

Sanguinarine (SNG), a natural compound with an array of pharmacological activities, has promising therapeutic potential against a number of pathological conditions, including malignancies. In the present study, we have investigated the antiproliferative potential of SNG against two well-characterized papillary thyroid cancer (PTC) cell lines, BCPAP and TPC-1. SNG significantly inhibited cell proliferation of PTC cells in a dose and time-dependent manner. Western blot analysis revealed that SNG markedly attenuated deregulated expression of p-STAT3, without affecting total STAT3, and inhibited growth of PTC via activation of apoptotic and autophagy signaling cascade, as SNG treatment of PTC cells led to the activation of caspase-3 and caspase-8; cleavage of PARP and activation of autophagy markers. Further, SNG-mediated anticancer effects in PTC cells involved the generation of reactive oxygen species (ROS) as N-acetyl cysteine (NAC), an inhibitor of ROS, prevented SNG-mediated antiproliferative, apoptosis and autophagy inducing action. Interestingly, SNG also sensitized PTC cells to chemotherapeutic drug cisplatin, which was inhibited by NAC. Finally, SNG suppressed the growth of PTC thyrospheres and downregulated stemness markers ALDH2 and SOX2. Altogether, the findings of the current study suggest that SNG has anticancer potential against PTC cells as well its derived cancer stem-like cells, most likely via inactivation of STAT3 and its associated signaling molecules.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/molecules25051229DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7179475PMC
March 2020

Curcumin-Mediated Apoptotic Cell Death in Papillary Thyroid Cancer and Cancer Stem-Like Cells through Targeting of the JAK/STAT3 Signaling Pathway.

Int J Mol Sci 2020 Jan 9;21(2). Epub 2020 Jan 9.

Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar.

The constitutive activation of Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) signal transduction is well elucidated in STAT3-mediated oncogenesis related to thyroid cancer and is considered to be a plausible therapeutic target. Hence, we investigated whether curcumin, a natural compound, can target the JAK/STAT3 signaling pathway to induce cytotoxic effects in papillary thyroid cancer (PTC) cell lines (BCPAP and TPC-1) and derived thyroid cancer stem-like cells (thyrospheres). Curcumin suppressed PTC cell survival in a dose-dependent manner via the induction of caspase-mediated apoptosis and caused the attenuation of constitutively active STAT3 (the dephosphorylation of Tyr705-STAT3) without affecting STAT3. Gene silencing with STAT3-specific siRNA showed the modulation of genes associated with cell growth and proliferation. The cotreatment of PTC cell lines with curcumin and cisplatin synergistically potentiated cytotoxic effects via the suppression of JAK/STAT3 activity along with the inhibition of antiapoptotic genes and the induction of proapoptotic genes, and it also suppressed the migration of PTC cells by downregulating matrix metalloproteinases and the inhibition of colony formation. Finally, thyrospheres treated with curcumin and cisplatin showed suppressed STAT3 phosphorylation, a reduced formation of thyrospheres, and the downregulated expression of stemness markers, in addition to apoptosis. The current study's findings suggest that curcumin synergistically enhances the anticancer activity of cisplatin in PTC cells as well as in cancer stem-like cells by targeting STAT3, which suggests that curcumin combined with chemotherapeutic agents may provide better therapeutic outcomes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms21020438DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7014270PMC
January 2020

Curcumin Induces Apoptotic Cell Death via Inhibition of PI3-Kinase/AKT Pathway in B-Precursor Acute Lymphoblastic Leukemia.

Front Oncol 2019 19;9:484. Epub 2019 Jun 19.

Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.

Acute lymphoblastic leukemia (ALL) is a significant cancer of children resulting from the clonal proliferation of lymphoid precursors with arrested maturation. Although chemotherapeutic approaches have been achieving successful remission for the majority of cases of childhood ALL, development of resistance to chemotherapy has been observed. Thus, new therapeutic approaches are required to improve patient's prognosis. Therefore, we investigated the anticancer potential of curcumin in ALL. We tested a panel of B-precursor ALL (B-Pre-ALL) cell lines with various translocations after treatment with different doses of curcumin. Curcumin suppresses the viability in a concentration-dependent manner in 697, REH, SupB15, and RS4;11 cells (doses from 0 to 80 μM). Curcumin induces apoptosis in B-Pre-ALL cell lines via activation of caspase-8 and truncation of BID. Curcumin treatment increased the ratio of Bax/Bcl-2 and resulted in a leaky mitochondrial membrane that led to the discharge of cytochrome c from the mitochondria to the cytoplasm, the activation of caspase 3 and the cleavage of PARP. Curcumin treatment of B-Pre-ALL cell lines induced a dephosphorylation of the constitutive phosphorylated AKT/PKB and a down-regulation of the expression of cIAP1, and XIAP. Moreover, curcumin mediates its anticancer activity by the generation of reactive oxygen species. Finally, the suboptimal doses of curcumin potentiated the anticancer activity of cisplatin. Altogether, these results suggest an important therapeutic role of curcumin, acting as a growth suppressor of B-Pre-ALL by apoptosis via inactivation of AKT/PKB and down-regulation of IAPs and activation of intrinsic apoptotic pathway via generation of Reactive Oxygen Species (ROS). Our interesting findings raise the possibility of considering curcumin as a potential therapeutic agent for the treatment of B-Pre-ALL.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fonc.2019.00484DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6593070PMC
June 2019

The Role of Extracellular Vesicles as Modulators of the Tumor Microenvironment, Metastasis and Drug Resistance in Colorectal Cancer.

Cancers (Basel) 2019 May 29;11(6). Epub 2019 May 29.

Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.

Colorectal cancer (CRC) is one of the most common cancers worldwide, with high morbidity and mortality rates. A number of factors including modulation of the tumor microenvironment, high metastatic capability, and resistance to treatment have been associated with CRC disease progression. Recent studies have documented that tumor-derived extracellular vesicles (EVs) play a significant role in intercellular communication in CRC via transfer of cargo lipids, proteins, DNA and RNAs to the recipient tumor cells. This transfer influences a number of immune-related pathways leading to activation/differentiation/expression of immune cells and modulation of the tumor microenvironment that plays a significant role in CRC progression, metastasis, and drug resistance. Furthermore, tumor-derived EVs are secreted in large amounts in biological fluids of CRC patients and as such the expression analysis of EV cargoes have been associated with prognosis or response to therapy and may be a source of therapeutic targets. This review aims to provide a comprehensive insight into the role of EVs in the modulation of the tumor microenvironment and its effects on CRC progression, metastasis, and drug resistance. On the other hand, the potential role of CRC derived EVs as a source of biomarkers of response and therapeutic targets will be discussed in detail to understand the dynamic role of EVs in CRC diagnosis, treatment, and management.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/cancers11060746DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6628238PMC
May 2019

Sanguinarine Induces Apoptosis Pathway in Multiple Myeloma Cell Lines via Inhibition of the JaK2/STAT3 Signaling.

Front Oncol 2019 17;9:285. Epub 2019 Apr 17.

Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.

Sanguinarine (SNG), a benzophenanthridine alkaloid, has displayed various anticancer abilities in several vivo and studies. However, the anticancer potential of SNG is yet to be established in multiple myeloma (MM), a mostly incurable malignancy of plasma cells. In this study, we aimed to investigate the potential anti-proliferative and pro-apoptotic activities of SNG in a panel of MM cell lines (U266, IM9, MM1S, and RPMI-8226). SNG treatment of MM cells resulted in a dose-dependent decrease in cell viability through mitochondrial membrane potential loss and activation of caspase 3, 9, and cleavage of PARP. Pre-treatment of MM cells with a universal caspase inhibitor, Z-VAD-FMK, prevented SNG mediated loss of cell viability, apoptosis, and caspase activation, confirming that SNG-mediated apoptosis is caspase-dependent. The SNG-mediated apoptosis appears to be resulted from suppression of the constitutively active STAT3 with a concomitant increase in expression of protein tyrosine phosphatase (SHP-1). SNG treatment of MM cells leads to down-regulation of the anti-apoptotic proteins including cyclin D, Bcl-2, Bclxl, and XIAP. In addition, it also upregulates pro-apoptotic protein, Bax. SNG mediated cellular DNA damage in MM cell lines by induction of oxidative stress through the generation of reactive oxygen species and depletion of glutathione. Finally, the subtoxic concentration of SNG enhanced the cytotoxic effects of anticancer drugs bortezomib (BTZ) by suppressing the viability of MM cells via induction of caspase-mediated apoptosis. Altogether our findings demonstrate that SNG induces mitochondrial and caspase-dependent apoptosis, generates oxidative stress, and suppresses MM cell lines proliferation. In addition, co-treatment of MM cell lines with sub-toxic doses of SNG and BTZ potentiated the cytotoxic activity. These results would suggest that SNG could be developed into therapeutic agent either alone or in combination with other anticancer drugs in MM.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fonc.2019.00285DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6478801PMC
April 2019

Greensporone A, a Fungal Secondary Metabolite Suppressed Constitutively Activated AKT via ROS Generation and Induced Apoptosis in Leukemic Cell Lines.

Biomolecules 2019 03 29;9(4). Epub 2019 Mar 29.

Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar.

Greensporone A is a fungal secondary metabolite that has exhibited potential in vitro for anti-proliferative activity in vitro. We studied the anticancer activity of greensporone A in a panel of leukemic cell lines. Greensporone A-mediated inhibition of proliferation is found to be associated with the induction of apoptotic cell death. Greensporone A treatment of leukemic cells causes inactivation of constitutively activated AKT and its downstream targets, including members GSK3 and FOXO1, and causes downregulation of antiapoptotic genes such as Inhibitor of Apoptosis (IAPs) and Bcl-2. Furthermore, Bax, a proapoptotic member of the Bcl-2 family, was found to be upregulated in leukemic cell lines treated with greensporone A. Interestingly, gene silencing of AKT using AKT specific siRNA suppressed the expression of Bcl-2 with enhanced expression of Bax. Greensporone A-mediated increase in Bax/Bcl-2 ratio causes permeabilization of the mitochondrial membrane leading to the accumulation of cytochrome c in the cytoplasm. Greensporone A-induced cytochrome c accumulation causes the activation of caspase cascade and cleavage of its effector, poly(ADP-ribose) polymerase (PARP), leading to apoptosis. Greensporone A-mediated apoptosis in leukemic cells occurs through the generation of reactive oxygen species (ROS) due to depletion of glutathione (GSH) levels. Finally, greensporone A potentiated the anticancer activity of imatinib in leukemic cells. In summary, our study showed that greensporone A suppressed the growth of leukemic cells via induction of apoptotic cell death. The apoptotic cell death occurs by inhibition of AKT signaling and activation of the intrinsic apoptotic/caspase pathways. These results raise the possibility that greensporone A could be developed as a therapeutic agent for the treatment of leukemia and other hematological malignancies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/biom9040126DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6523683PMC
March 2019

Evaluation of cationic channel TRPV2 as a novel biomarker and therapeutic target in Leukemia-Implications concerning the resolution of pulmonary inflammation.

Sci Rep 2019 02 7;9(1):1554. Epub 2019 Feb 7.

Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.

Patients treated during leukemia face the risk of complications including pulmonary dysfunction that may result from infiltration of leukemic blast cells (LBCs) into lung parenchyma and interstitium. In LBCs, we demonstrated that transient receptor potential vanilloid type 2 channel (TRPV2), reputed for its role in inflammatory processes, exhibited oncogenic activity associated with alteration of its molecular expression profile. TRPV2 was overexpressed in LBCs compared to normal human peripheral blood mononuclear cells (PBMCs). Additionally, functional full length isoform and nonfunctional short form pore-less variant of TRPV2 protein were up-regulated and down-regulated respectively in LBCs. However, the opposite was found in PBMCs. TRPV2 silencing or pharmacological targeting by Tranilast (TL) or SKF96365 (SKF) triggered caspace-mediated apoptosis and cell cycle arrest. TL and SKF inhibited chemotactic peptide fMLP-induced response linked to TRPV2 Ca activity, and down-regulated expression of surface marker CD38 involved in leukemia and lung airway inflammation. Challenging lung airway epithelial cells (AECs) with LBCs decreased (by more than 50%) transepithelial resistance (TER) denoting barrier function alteration. Importantly, TL prevented such loss in TER. Therefore, TRPV2 merits further exploration as a pharmacodynamic biomarker for leukemia patients (with pulmonary inflammation) who might be suitable for a novel [adjuvant] therapeutic strategy based on TL.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-018-37469-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6367460PMC
February 2019

Curcumin-Mediated Degradation of S-Phase Kinase Protein 2 Induces Cytotoxic Effects in Human Papillomavirus-Positive and Negative Squamous Carcinoma Cells.

Front Oncol 2018 2;8:399. Epub 2018 Oct 2.

Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.

S-phase kinase-associated protein2 (Skp2), a proto-oncoprotein, plays an important role in development and progression of human malignancies. Skp2 is frequently overexpressed in many human malignancies. It targets cell cycle progression through ubiquitin mediated degradation of G1-checkpoint CDK inhibitors-p21 (CDKN1A) and p27 (CDKN1B). We investigated the role of Skp2 and its ubiquitin-proteasome pathway in head and neck squamous cell carcinoma (HNSCC) using a panel of cell lines with and without human papillomavirus (HPV, HPV). Treatment of HNSCC cell lines with curcumin, a natural compound isolated from rhizomes of the plant , or transfection of small interfering RNA of Skp2, causes down-regulation of Skp2 with concomitant accumulation of p21 and p27 in HPV, HPV cells. Furthermore curcumin inhibits cell viability and induces apoptosis in a dose-dependent manner. Treatment of HPV and HPV cells with curcumin induced apoptosis via mitochondrial pathway and activation of caspases. In addition, treatment of HPV and HPV cell lines with curcumin down-regulated the expression of XIAP, cIAP1, and cIAP2. Interestingly, co-treatment of HNSCC cells with curcumin and cisplatin potentiated inhibition of cell viability and apoptotic effects. Altogether, these data suggest an important function for curcumin, acting as a suppressor of oncoprotein Skp2 in squamous cell carcinoma cells in both HPV and HPV cells; raise the possibility that this agent may have a future therapeutic role in squamous cell carcinoma.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fonc.2018.00399DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6176276PMC
October 2018

Sanguinarine suppresses growth and induces apoptosis in childhood acute lymphoblastic leukemia.

Leuk Lymphoma 2019 03 6;60(3):782-794. Epub 2018 Sep 6.

a Translational Research Institute , Academic Health System, Hamad Medical Corporation , Doha , Qatar.

Sanguinarine (Sang), a plant-derived compound isolated from the roots of Sanguinaria canadensis was evaluated for its potential pro-apoptotic effects in precursor B acute lymphoblastic leukemia (Pre-ALL) cell lines. Treatment of 697, REH, RS4;11, and SupB15 cell lines with Sang exhibited significant inhibition of cell viability via induction of apoptotic cell death. Sang-mediated apoptosis was found to be associated with the increased expression of proapoptotic bax with concomitant decrease of Bcl-2 expression leading to depolarization of mitochondria membrane resulting in loss of mitochondrial membrane potential (MMP). The reduced MMP caused the leakage in mitochondrial membrane and release of cytochrome c into the cytosol. The cytochrome c then mediates the activation of caspase-cascade and subsequently PARP cleavage. Furthermore, pretreatment with z-VAD-FMK, a pan-caspase inhibitor, abrogated Sang-induced inhibition of cell viability, induction of apoptosis. Sang treatment also reduced the phosphorylation of AKT and suppressed the expression of a number of anti-apoptotic genes such as cIAP1, cIAP2, and XIAP. Sang mediates its anti-cancer activity by generation of reactive oxygen species (ROS) due to depletion of glutathione level in leukemic cell lines. Pretreatment of these cells with N-acetyl cysteine (NAC) prevented Sang-induced depletion of glutathione level and mitochondrial-caspase-induced apoptosis. Finally, Sang treatment of Pre-ALL cell suppressed colony formation ability of these cells suggesting Sang has an anti-leukemic potential. Altogether, our data suggest that Sang is an efficient inducer of intrinsic apoptotic cell death via generation of ROS and exhibition of anti-leukemic effect in Pre-ALL cells raises the possibility to develop Sang as a therapeutic modality for the treatment and management of Pre-ALL.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/10428194.2018.1494270DOI Listing
March 2019

Accelerated lipid catabolism and autophagy are cancer survival mechanisms under inhibited glutaminolysis.

Cancer Lett 2018 08 17;430:133-147. Epub 2018 May 17.

Department of Physiology and Biophysics, Weill Cornell Medicine - Qatar, Education City, PO 24144, Doha, Qatar. Electronic address:

Suppressing glutaminolysis does not always induce cancer cell death in glutamine dependent tumors because cells may switch to alternative energy sources. To reveal compensatory metabolic pathways, we investigated the metabolome-wide cellular response to inhibited glutaminolysis in cancer cells. Glutaminolysis inhibition with C.968 suppressed cell proliferation but was insufficient to induce cancer cell death. We found that lipid catabolism was activated as a compensation for glutaminolysis inhibition. Accelerated lipid catabolism, together with oxidative stress induced by glutaminolysis inhibition, triggered autophagy. Simultaneously inhibiting glutaminolysis and either beta oxidation with trimetazidine or autophagy with chloroquine both induced cancer cell death. Here we identified metabolic escape mechanisms contributing to cancer cell survival under treatment and we suggest potentially translational strategy for combined cancer therapy, given that chloroquine is an FDA approved drug. Our findings are first to show efficiency of combined inhibition of glutaminolysis and beta oxidation as potential anti-cancer strategy as well as add to the evidence that combined inhibition of glutaminolysis and autophagy may be effective in glutamine-addicted cancers.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canlet.2018.05.017DOI Listing
August 2018

Celastrol Attenuates the Invasion and Migration and Augments the Anticancer Effects of Bortezomib in a Xenograft Mouse Model of Multiple Myeloma.

Front Pharmacol 2018 3;9:365. Epub 2018 May 3.

Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.

Several lines of evidence have demonstrated that deregulated activation of NF-κB plays a pivotal role in the initiation and progression of a variety of cancers including multiple myeloma (MM). Therefore, novel molecules that can effectively suppress deregulated NF-κB upregulation can potentially reduce MM growth. In this study, the effect of celastrol (CSL) on patient derived CD138+ MM cell proliferation, apoptosis, cell invasion, and migration was investigated. In addition, we studied whether CSL can potentiate the apoptotic effect of bortezomib, a proteasome inhibitor in MM cells and in a xenograft mouse model. We found that CSL significantly reduced cell proliferation and enhanced apoptosis when used in combination with bortezomib and upregulated caspase-3 in these cells. CSL also inhibited invasion and migration of MM cells through the suppression of constitutive NF-κB activation and expression of downstream gene products such as CXCR4 and MMP-9. Moreover, CSL when administered either alone or in combination with bortezomib inhibited MM tumor growth and decreased serum IL-6 and TNF-α levels. Overall, our results suggest that CSL can abrogate MM growth both and and may serve as a useful pharmacological agent for the treatment of myeloma and other hematological malignancies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fphar.2018.00365DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5943600PMC
May 2018

RAS-mediated oncogenic signaling pathways in human malignancies.

Semin Cancer Biol 2019 02 7;54:1-13. Epub 2018 Mar 7.

Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar. Electronic address:

Abnormally activated RAS proteins are the main oncogenic driver that governs the functioning of major signaling pathways involved in the initiation and development of human malignancies. Mutations in RAS genes and or its regulators, most frequent in human cancers, are the main force for incessant RAS activation and associated pathological conditions including cancer. In general, RAS is the main upstream regulator of the highly conserved signaling mechanisms associated with a plethora of important cellular activities vital for normal homeostasis. Mutated or the oncogenic RAS aberrantly activates a web of interconnected signaling pathways including RAF-MEK (mitogen-activated protein kinase kinase)-ERK (extracellular signal-regulated kinase), phosphoinositide-3 kinase (PI3K)/AKT (protein kinase B), protein kinase C (PKC) and ral guanine nucleotide dissociation stimulator (RALGDS), etc., leading to uncontrolled transcriptional expression and reprogramming in the functioning of a range of nuclear and cytosolic effectors critically associated with the hallmarks of carcinogenesis. This review highlights the recent literature on how oncogenic RAS negatively use its signaling web in deregulating the expression and functioning of various effector molecules in the pathogenesis of human malignancies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.semcancer.2018.03.001DOI Listing
February 2019

Role of Non Receptor Tyrosine Kinases in Hematological Malignances and its Targeting by Natural Products.

Mol Cancer 2018 02 19;17(1):31. Epub 2018 Feb 19.

Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar.

Tyrosine kinases belong to a family of enzymes that mediate the movement of the phosphate group to tyrosine residues of target protein, thus transmitting signals from the cell surface to cytoplasmic proteins and the nucleus to regulate physiological processes. Non-receptor tyrosine kinases (NRTK) are a sub-group of tyrosine kinases, which can relay intracellular signals originating from extracellular receptor. NRTKs can regulate a huge array of cellular functions such as cell survival, division/propagation and adhesion, gene expression, immune response, etc. NRTKs exhibit considerable variability in their structural make up, having a shared kinase domain and commonly possessing many other domains such as SH2, SH3 which are protein-protein interacting domains. Recent studies show that NRTKs are mutated in several hematological malignancies, including lymphomas, leukemias and myelomas, leading to aberrant activation. It can be due to point mutations which are intragenic changes or by fusion of genes leading to chromosome translocation. Mutations that lead to constitutive kinase activity result in the formation of oncogenes, such as Abl, Fes, Src, etc. Therefore, specific kinase inhibitors have been sought after to target mutated kinases. A number of compounds have since been discovered, which have shown to inhibit the activity of NRTKs, which are remarkably well tolerated. This review covers the role of various NRTKs in the development of hematological cancers, including their deregulation, genetic alterations, aberrant activation and associated mutations. In addition, it also looks at the recent advances in the development of novel natural compounds that can target NRTKs and perhaps in combination with other forms of therapy can show great promise for the treatment of hematological malignancies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12943-018-0788-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5817858PMC
February 2018

Targeting of X-linked inhibitor of apoptosis protein and PI3-kinase/AKT signaling by embelin suppresses growth of leukemic cells.

PLoS One 2017 13;12(7):e0180895. Epub 2017 Jul 13.

Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, State of Qatar.

The X-linked inhibitor of apoptosis (XIAP) is a viable molecular target for anticancer drugs that overcome apoptosis-resistance of malignant cells. XIAP is an inhibitor of apoptosis, mediating through its association with BIR3 domain of caspase 9. Embelin, a quinone derivative isolated from the Embelia ribes plant, has been shown to exhibit chemopreventive, anti-inflammatory, and apoptotic activities via inhibiting XIAP activity. In this study, we found that embelin causes a dose-dependent suppression of proliferation in leukemic cell lines K562 and U937. Embelin mediated inhibition of proliferation correlates with induction of apoptosis. Furthermore, embelin treatment causes loss of mitochondrial membrane potential and release of cytochrome c, resulting in subsequent activation of caspase-3 followed by polyadenosin-5'-diphosphate-ribose polymerase (PARP) cleavage. In addition, embelin treatment of leukemic cells results in a decrease of constitutive phosphorylations/activation level of AKT and downregulation of XIAP. Gene silencing of XIAP and AKT expression showed a link between XIAP expression and activated AKT in leukemic cells. Interestingly, targeting of XIAP and PI3-kinase/AKT signaling augmented inhibition of proliferation and induction of apoptosis in leukemic cells. Altogether these findings raise the possibility that embelin alone or in combination with inhibitors of PI3-kinase/AKT pathway may have therapeutic usage in leukemia and possibly other malignancies with up-regulated XIAP pathway.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0180895PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5509148PMC
September 2017

Cardamonin represses proliferation, invasion, and causes apoptosis through the modulation of signal transducer and activator of transcription 3 pathway in prostate cancer.

Apoptosis 2017 01;22(1):158-168

Department of Korean Pathology, College of Korean Medicine, Kyung Hee University, #47, Kyungheedae-gil, 1 Hoegi-Dong Dongdaemun-Gu, Seoul, 130-701, Republic of Korea.

The pleiotropic transcription factor, signal transducer and activator of transcription 3 (STAT3) is often aberrantly activated in a wide variety of cancers and plays a pivotal role in tumor initiation, promotion and progression. Targeting deregulated STAT3 activation by small molecule inhibitors is generally considered as an important therapeutic strategy. Hence, in the present study, we evaluated the potential of cardamonin (CD), a 2',4'-dihydroxy-6'-methoxychalcone, to modulate STAT3 activation in prostate cancer (PC) cells and found that this chalcone can indeed exhibit significant anticancer effects through negatively regulating STAT3 activation by diverse molecular mechanism(s). CD suppressed STAT3 phosphorylation, nuclear translocation and DNA binding ability in PC cells. Computational modeling revealed that CD can bind directly to the Src Homology 2 domain of STAT3 and also effectively inhibit its dimerization. CD was also found to significantly reduce the migratory/invasive potential of PC cells through the downregulation of various oncogenic proteins. Overall, the data indicates that the potential application of CD as a STAT3 blocker can mitigate both the growth and survival of PC cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10495-016-1313-7DOI Listing
January 2017

Bortezomib-mediated downregulation of S-phase kinase protein-2 (SKP2) causes apoptotic cell death in chronic myelogenous leukemia cells.

J Transl Med 2016 Mar 9;14:69. Epub 2016 Mar 9.

Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar.

Background: Proteasome inhibitors are attractive cancer therapeutic agents because they can regulate apoptosis-related proteins. Bortezomib also known as Velcade(®), a proteasome inhibitor that has been approved by the food and drug administration for treatment of patients with multiple myeloma, and many clinical trials are ongoing to examine to the efficacy of bortezomib for the treatment of other malignancies. Bortezomib has been shown to induce apoptosis and inhibit cell growth of many cancer cells. In current study, we determine whether bortezomib induces cell death/apoptosis in CML.

Methods: Cell viability was measured using MTT assays. Apoptosis was measured by annexin V/PI dual staining and DNA fragmentation assays. Immunoblotting was performed to examine the expression of proteins. Colony assays were performed using methylcellulose.

Results: Treatment of CML cells with bortezomib results in downregulation of S-phase kinase protein 2 (SKP2) and concomitant stabilization of the expression of p27Kip1. Furthermore, knockdown of SKP2 with small interference RNA specific for SKP2 caused accumulation of p27Kip1. CML cells exposed to bortezomib leads to conformational changes in Bax protein, resulting in loss of mitochondrial membrane potential and leakage of cytochrome c to the cytosol. In the cytosol, cytochrome c causes sequential activation of caspase-9, caspase-3, PARP cleavage and apoptosis. Pretreatment of CML cells with a universal inhibitor of caspases, z-VAD-fmk, prevents bortezomib-mediated apoptosis. Our data also demonstrated that bortezomib treatment of CML downregulates the expression of inhibitor of apoptosis proteins. Finally, inhibition of proteasome pathways by bortezomib suppresses colony formation ability of CML cells.

Conclusions: Altogether, these findings suggest that bortezomib suppresses the cell proliferation via induction of apoptosis in CML cells by downregulation of SKP2 with concomitant accumulation of p27Kip1, suggesting that proteasomal pathway may form novel therapeutic targets for better management of CML.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12967-016-0823-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4784454PMC
March 2016

microRNAs in breast cancer: regulatory roles governing the hallmarks of cancer.

Biol Rev Camb Philos Soc 2016 May 28;91(2):409-28. Epub 2015 Jan 28.

Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.

A large number of etiological factors and the complexity of breast cancers present challenges for prevention and treatment. Recently, the emergence of microRNAs (miRNAs) as cancer biomarkers has added an extra dimension to the 'molecular signatures' of breast cancer. Bioinformatic analyses indicate that each miRNA can regulate hundreds of target genes and could serve functionally as 'oncogenes' or 'tumour suppressor' genes, and co-ordinate multiple cellular processes relevant to cancer progression. A number of studies have shown that miRNAs play important roles in breast tumorigenesis, metastasis, proliferation and differentiation of breast cancer cells. This review provides a comprehensive overview of miRNAs with established functional relevance in breast cancer, their established target genes and resulting cellular phenotype. The role and application of circulating miRNAs in breast cancer is also discussed. Furthermore, we summarize the role of miRNAs in the hallmarks of breast cancer, as well as the possibility of using miRNAs as potential biomarkers for detection of breast cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/brv.12176DOI Listing
May 2016

Silymarin and hepatocellular carcinoma: a systematic, comprehensive, and critical review.

Anticancer Drugs 2015 Jun;26(5):475-86

aAmerican University of Health Sciences, Signal Hill bDepartment of Pharmaceutical and Biomedical Sciences, College of Pharmacy, California Northstate University, Elk Grove, California, USA cDepartment of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore dInterim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar.

The blessed milk thistle (Silybum marianum L.), a flowering plant native to Mediterranean Europe, has been consumed and extensively used as a cure for various chronic liver ailments over several centuries. Milk thistle extract, known as silymarin, is a complex mixture of seven major flavonolignans and one flavonoid. The phytoconstituents of silymarin owe their therapeutic and hepatoprotective effects to their strong antioxidant and anti-inflammatory properties. Primary liver cancer, also known as hepatocellular carcinoma (HCC), occurs in a milieu of oxidative stress and inflammation. The etiology of HCC includes chronic infection with hepatitis B and C viruses, cirrhosis, and exposure to dietary and environmental hepatocarcinogens. Current therapeutic options for HCC, including surgical resection and liver transplantation, have limited benefits and are essentially ineffective. Chemoprevention, using phytochemicals with potent antioxidant and anti-inflammatory properties, represents a fascinating strategy, which has been a subject of intense investigation in the recent years. In this review, we explore the potential role of silymarin as a chemopreventive and therapeutic agent for HCC. The review systematically evaluates the preclinical in-vitro and in-vivo studies investigating the effects of silymarin and its constituents on HCC. The biochemical mechanisms involved in the anti-liver-cancer effects of silymarin have been presented. The current status of clinical studies evaluating the potential of role of silymarin in liver cancer, especially that caused by hepatitis C virus, has also been examined. Potential challenges and future directions of research involved in the 'bench-to-bedside' transition of silymarin phytoconstituents for the chemoprevention and treatment of HCC have also been discussed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/CAD.0000000000000211DOI Listing
June 2015

Thujone inhibits lung metastasis induced by B16F-10 melanoma cells in C57BL/6 mice.

Can J Physiol Pharmacol 2011 Oct 9;89(10):691-703. Epub 2011 Sep 9.

Department of Immunology, Amala Cancer Research Centre, Amala Nagar, Thrissur, Kerala, India.

The antimetastatic potential of thujone, a naturally occurring monoterpene, was evaluated. Metastasis was induced in C57BL/6 mice by injecting highly metastatic B16F-10 melanoma cells through the lateral tail vein. Administration of thujone (1 mg·(kg body weight)(-1)), prophylactically and simultaneously with tumor induction, inhibited tumor nodule formation in the lungs by 59.45% and 57.54%, respectively, with an increase in the survival rate (33.67% and 32.16%) of the metastatic tumor bearing animals. These results correlated with biochemical parameters such as lung collagen hydroxyproline, hexosamine and uronic acid contents, serum sialic acid and γ-glutamyl transpeptidase levels, and histopathological analysis. Treatment with thujone downregulated the production of proinflammatory cytokines such as tumor necrosis factor-α, interleukin (IL)-1β, IL-6, and granulocyte-monocyte colony-stimulating factor. Thujone administration downregulated the expression of matrix metalloproteinase (MMP)-2, MMP-9, extracellular signal-regulated kinase (ERK)-1, ERK-2, and vascular endothelial growth factor (VEGF) and also upregulated the expression of nm-23, tissue inhibitor of metalloproteinase (TIMP)-1, and TIMP-2 in the lung tissue of metastasis-induced animals. Treatment with thujone inhibited the activity of MMP-2 and MMP-9 in gelatin zymographic analysis. Thujone treatment significantly inhibited the invasion of B16F-10 melanoma cells across the collagen matrix in a Boyden chamber. Thujone also inhibited the adhesion of tumor cells to collagen-coated microtire plate wells and the migration of B16F-10 melanoma cells across a polycarbonate filter in vitro. These results indicate that Thujone can inhibit the lung metastasis of B16F-10 cells through inhibition of tumor cell proliferation, adhesion, and invasion, as well as by regulating expression of MMPs, VEGF, ERK-1, ERK-2, TIMPs, nm23, and levels of proinflammatory cytokines and IL-2 in metastatic animals.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1139/y11-067DOI Listing
October 2011

Inhibition of metastasis of B16F-10 melanoma cells in C57BL/6 mice by an extract of Calendula officinalis L flowers.

Asian Pac J Cancer Prev 2010 ;11(6):1773-9

Department of Biochemistry, Amala Cancer Research Centre, Amala Nagar, Thrissur, Kerala, India.

Aim: To determine the effect of a Calendula officinalis flower extract on lung metastasis by B16F-10 melanoma cells in C57BL/6 mice.

Materials And Methods: Male mice were injected with B16F-10 melanoma cells through the tail vein and simultaneously treated with C.officinalis flower extract. Parameters studied were lung tumor nodule count, life span of animals, gamma glutamyl transpeptidase activity, sialic acid, TNF-α, IL-1β, IL-6, IL-2, GM-CSF, VEGF and TIMP-1 levels in serum, and lung hydroxyproline, uronic acid and hexosamine levels, as well as histopathological features. Effects of C.officinalis on the expression of various genes involved in metastasis like matrix metalloproteases (MMPs), tissue inhibitor of metalloproteases (TIMPs), prolyl hydoxylase, lysyl oxidase, nm23, and proinflammatory cytokines were also investigated.

Results: Simultaneous administration of C. officinalis extract to tumor bearing C57BL/6 mice reduced the lung tumor nodules by 74% with 43.3% increase in life span. Elevated levels of hydroxyproline, uronic acid, hexosamine, serum sialic acid and γ-glutamyl transpeptidase in the metastatic controls were found to be significantly lowered in the C. officinalis treated animals. The extract also inhibited expression of MMP-2, MMP-9, prolyl hydroxylase and lysyl oxidase and activated TIMP-1 and TIMP-2 and downregulated proinflammatory cytokines.

Conclusions: The present investigation indicated antimetastatic effects of Calendula officinalis flowers through the inhibition of key enzymes involved in processes of metastasis.
View Article and Find Full Text PDF

Download full-text PDF

Source
July 2011