Publications by authors named "Klaus-Peter Lesch"

363 Publications

Cadherin-13 is a critical regulator of GABAergic modulation in human stem-cell-derived neuronal networks.

Mol Psychiatry 2021 May 10. Epub 2021 May 10.

Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, The Netherlands.

Activity in the healthy brain relies on a concerted interplay of excitation (E) and inhibition (I) via balanced synaptic communication between glutamatergic and GABAergic neurons. A growing number of studies imply that disruption of this E/I balance is a commonality in many brain disorders; however, obtaining mechanistic insight into these disruptions, with translational value for the patient, has typically been hampered by methodological limitations. Cadherin-13 (CDH13) has been associated with autism and attention-deficit/hyperactivity disorder. CDH13 localizes at inhibitory presynapses, specifically of parvalbumin (PV) and somatostatin (SST) expressing GABAergic neurons. However, the mechanism by which CDH13 regulates the function of inhibitory synapses in human neurons remains unknown. Starting from human-induced pluripotent stem cells, we established a robust method to generate a homogenous population of SST and MEF2C (PV-precursor marker protein) expressing GABAergic neurons (iGABA) in vitro, and co-cultured these with glutamatergic neurons at defined E/I ratios on micro-electrode arrays. We identified functional network parameters that are most reliably affected by GABAergic modulation as such, and through alterations of E/I balance by reduced expression of CDH13 in iGABAs. We found that CDH13 deficiency in iGABAs decreased E/I balance by means of increased inhibition. Moreover, CDH13 interacts with Integrin-β1 and Integrin-β3, which play opposite roles in the regulation of inhibitory synaptic strength via this interaction. Taken together, this model allows for standardized investigation of the E/I balance in a human neuronal background and can be deployed to dissect the cell-type-specific contribution of disease genes to the E/I balance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41380-021-01117-xDOI Listing
May 2021

Increased Oxidative Stress in the Prefrontal Cortex as a Shared Feature of Depressive- and PTSD-Like Syndromes: Effects of a Standardized Herbal Antioxidant.

Front Nutr 2021 15;8:661455. Epub 2021 Apr 15.

Department of Preventive Medicine, Maastricht Medical Center Annadal, Maastricht, Netherlands.

Major depression (MD) and posttraumatic stress disorder (PTSD) share common brain mechanisms and treatment strategies. Nowadays, the dramatically developing COVID-19 situation unavoidably results in stress, psychological trauma, and high incidence of MD and PTSD. Hence, the importance of the development of new treatments for these disorders cannot be overstated. Herbal medicine appears to be an effective and safe treatment with fewer side effects than classic pharmaca and that is affordable in low-income countries. Currently, oxidative stress and neuroinflammation attract increasing attention as important mechanisms of MD and PTSD. We investigated the effects of a standardized herbal cocktail (SHC), an extract of clove, bell pepper, basil, pomegranate, nettle, and other plants, that was designed as an antioxidant treatment in mouse models of MD and PTSD. In the MD model of "emotional" ultrasound stress (US), mice were subjected to ultrasound frequencies of 16-20 kHz, mimicking rodent sounds of anxiety/despair and "neutral" frequencies of 25-45 kHz, for three weeks and concomitantly treated with SHC. US-exposed mice showed elevated concentrations of oxidative stress markers malondialdehyde and protein carbonyl, increased gene and protein expression of pro-inflammatory cytokines interleukin (IL)-1β and IL-6 and other molecular changes in the prefrontal cortex as well as weight loss, helplessness, anxiety-like behavior, and neophobia that were ameliorated by the SHC treatment. In the PTSD model of the modified forced swim test (modFST), in which a 2-day swim is followed by an additional swim on day 5, mice were pretreated with SHC for 16 days. Increases in the floating behavior and oxidative stress markers malondialdehyde and protein carbonyl in the prefrontal cortex of modFST-mice were prevented by the administration of SHC. Chromatography mass spectrometry revealed bioactive constituents of SHC, including D-ribofuranose, beta-D-lactose, malic, glyceric, and citric acids that can modulate oxidative stress, immunity, and gut and microbiome functions and, thus, are likely to be active antistress elements underlying the beneficial effects of SHC. Significant correlations of malondialdehyde concentration in the prefrontal cortex with altered measures of behavioral despair and anxiety-like behavior suggest that the accumulation of oxidative stress markers are a common biological feature of MD and PTSD that can be equally effectively targeted therapeutically with antioxidant therapy, such as the SHC investigated here.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fnut.2021.661455DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8086427PMC
April 2021

Analysis of structural brain asymmetries in attention-deficit/hyperactivity disorder in 39 datasets.

J Child Psychol Psychiatry 2021 Mar 22. Epub 2021 Mar 22.

Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA.

Objective: Some studies have suggested alterations of structural brain asymmetry in attention-deficit/hyperactivity disorder (ADHD), but findings have been contradictory and based on small samples. Here, we performed the largest ever analysis of brain left-right asymmetry in ADHD, using 39 datasets of the ENIGMA consortium.

Methods: We analyzed asymmetry of subcortical and cerebral cortical structures in up to 1,933 people with ADHD and 1,829 unaffected controls. Asymmetry Indexes (AIs) were calculated per participant for each bilaterally paired measure, and linear mixed effects modeling was applied separately in children, adolescents, adults, and the total sample, to test exhaustively for potential associations of ADHD with structural brain asymmetries.

Results: There was no evidence for altered caudate nucleus asymmetry in ADHD, in contrast to prior literature. In children, there was less rightward asymmetry of the total hemispheric surface area compared to controls (t = 2.1, p = .04). Lower rightward asymmetry of medial orbitofrontal cortex surface area in ADHD (t = 2.7, p = .01) was similar to a recent finding for autism spectrum disorder. There were also some differences in cortical thickness asymmetry across age groups. In adults with ADHD, globus pallidus asymmetry was altered compared to those without ADHD. However, all effects were small (Cohen's d from -0.18 to 0.18) and would not survive study-wide correction for multiple testing.

Conclusion: Prior studies of altered structural brain asymmetry in ADHD were likely underpowered to detect the small effects reported here. Altered structural asymmetry is unlikely to provide a useful biomarker for ADHD, but may provide neurobiological insights into the trait.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/jcpp.13396DOI Listing
March 2021

Dorsal raphe serotonin neurotransmission is required for the expression of nursing behavior and for pup survival.

Sci Rep 2021 Mar 16;11(1):6004. Epub 2021 Mar 16.

INSERM, Institut du Fer À Moulin, Sorbonne Université UMR-S 1270, Paris, France.

Proper maternal care is an essential factor of reproductive success in mammals, involving a repertoire of behaviors oriented toward the feeding and care of the offspring. Among the neurotransmitters involved in the initiation of these behaviors, serotonin (5-HT) seems to play an important role. Here we compared pup-oriented maternal behaviors in mice with constitutive 5-HT depletion, the tryptophan hydroxylase 2-knock-out (Tph2-KO) and the Pet1-KO mice. We report that the only common pup-oriented defect in these 2 hyposerotoninergic models is a defective nursing in parturient mice and altered nursing-like (crouching) behavior in virgin mice, while pup retrieval defects are only present in Tph2-KO. Despite a normal mammary gland development and milk production, the defect in appropriate nursing is responsible for severe growth retardation and early lethality of pups born to hyposerotonergic dams. This nursing defect is due to acute rather constitutive 5-HT depletion, as it is reproduced by adult knockdown of Tph2 in the dorsal raphe nucleus in mothers with a prior normal maternal experience. We conclude that 5-HT innervation from the dorsal raphe is required for both the initiation and maintenance of a normal nursing behavior. Our findings may be related to observations of reduced maternal/infant interactions in human depression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-021-84368-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7966367PMC
March 2021

No links between genetic variation and developing theory of mind: A preregistered replication attempt of candidate gene studies.

Dev Sci 2021 Mar 5:e13100. Epub 2021 Mar 5.

Department of Psychology, Ludwig-Maximilians-Universität, Munich, Germany.

Genetic variability is being discussed as a source of inter-individual differences in Theory of Mind development. Previous studies documented an association between variations in DRD4 VNTR 48 bp, OXTR rs53576, COMT rs4680, and Theory of Mind task performance. As empirical evidence on these associations is sparse, we conducted a preregistered replication attempt of a study reporting a link between DRD4 VNTR 48 bp and false belief understanding in 50-month-old children [Lackner, C., Sabbagh, M. A., Hallinan, E., Liu, X., & Holden, J. J. (2012). Developmental Science, 15(2), 272-280.]. Additionally, we attempted a replication of studies on the role of OXTR rs53576 and COMT rs4680 in Theory of Mind. In both replication attempts, we did not find any evidence for associations between the sampled genetic markers and Theory of Mind ability in a series of analyses. Extending the replication attempt of Lackner et al., we employed longitudinal data from several tasks and measurement points, which allowed us to run follow-up robustness checks with more reliable scores. These extensive analyses corroborated our null finding. This comprehensive non-replication is important to balance current research on genetic markers of Theory of Mind. In a combined evaluation of our own and previous studies, we point to substantial methodological issues that research on the genetic basis of Theory of Mind development faces. We conclude that these limitations currently prevent firm conclusions on genetic influences on Theory of Mind development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/desc.13100DOI Listing
March 2021

Serotonin transporter genotype modulates resting state and predator stress-induced amygdala perfusion in mice in a sex-dependent manner.

PLoS One 2021 19;16(2):e0247311. Epub 2021 Feb 19.

Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Wuerzburg, Wuerzburg, Germany.

The serotonin transporter (5-HTT) is a key molecule of serotoninergic neurotransmission and target of many anxiolytics and antidepressants. In humans, 5-HTT gene variants resulting in lower expression levels are associated with behavioral traits of anxiety. Furthermore, functional magnetic resonance imaging (fMRI) studies reported increased cerebral blood flow (CBF) during resting state (RS) and amygdala hyperreactivity. 5-HTT deficient mice as an established animal model for anxiety disorders seem to be well suited for investigating amygdala (re-)activity in an fMRI study. We investigated wildtype (5-HTT+/+), heterozygous (5-HTT+/-), and homozygous 5-HTT-knockout mice (5-HTT-/-) of both sexes in an ultra-high-field 17.6 Tesla magnetic resonance scanner. CBF was measured with continuous arterial spin labeling during RS, stimulation state (SS; with odor of rats as aversive stimulus), and post-stimulation state (PS). Subsequently, post mortem c-Fos immunohistochemistry elucidated neural activation on cellular level. The results showed that in reaction to the aversive odor CBF in total brain and amygdala of all mice significantly increased. In male 5-HTT+/+ mice amygdala RS CBF levels were found to be significantly lower than in 5-HTT+/- mice. From RS to SS 5-HTT+/+ amygdala perfusion significantly increased compared to both 5-HTT+/- and 5-HTT-/- mice. Perfusion level changes of male mice correlated with the density of c-Fos-immunoreactive cells in the amygdaloid nuclei. In female mice the perfusion was not modulated by the 5-Htt-genotype, but by estrous cycle stages. We conclude that amygdala reactivity is modulated by the 5-Htt genotype in males. In females, gonadal hormones have an impact which might have obscured genotype effects. Furthermore, our results demonstrate experimental support for the tonic model of 5-HTTLPR function.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0247311PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7895400PMC
February 2021

Cortical thickness across the lifespan: Data from 17,075 healthy individuals aged 3-90 years.

Hum Brain Mapp 2021 Feb 17. Epub 2021 Feb 17.

Laboratory of Psychiatric Neuroimaging, Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.

Delineating the association of age and cortical thickness in healthy individuals is critical given the association of cortical thickness with cognition and behavior. Previous research has shown that robust estimates of the association between age and brain morphometry require large-scale studies. In response, we used cross-sectional data from 17,075 individuals aged 3-90 years from the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to infer age-related changes in cortical thickness. We used fractional polynomial (FP) regression to quantify the association between age and cortical thickness, and we computed normalized growth centiles using the parametric Lambda, Mu, and Sigma method. Interindividual variability was estimated using meta-analysis and one-way analysis of variance. For most regions, their highest cortical thickness value was observed in childhood. Age and cortical thickness showed a negative association; the slope was steeper up to the third decade of life and more gradual thereafter; notable exceptions to this general pattern were entorhinal, temporopolar, and anterior cingulate cortices. Interindividual variability was largest in temporal and frontal regions across the lifespan. Age and its FP combinations explained up to 59% variance in cortical thickness. These results may form the basis of further investigation on normative deviation in cortical thickness and its significance for behavioral and cognitive outcomes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/hbm.25364DOI Listing
February 2021

Subcortical volumes across the lifespan: Data from 18,605 healthy individuals aged 3-90 years.

Hum Brain Mapp 2021 Feb 11. Epub 2021 Feb 11.

Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA.

Age has a major effect on brain volume. However, the normative studies available are constrained by small sample sizes, restricted age coverage and significant methodological variability. These limitations introduce inconsistencies and may obscure or distort the lifespan trajectories of brain morphometry. In response, we capitalized on the resources of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to examine age-related trajectories inferred from cross-sectional measures of the ventricles, the basal ganglia (caudate, putamen, pallidum, and nucleus accumbens), the thalamus, hippocampus and amygdala using magnetic resonance imaging data obtained from 18,605 individuals aged 3-90 years. All subcortical structure volumes were at their maximum value early in life. The volume of the basal ganglia showed a monotonic negative association with age thereafter; there was no significant association between age and the volumes of the thalamus, amygdala and the hippocampus (with some degree of decline in thalamus) until the sixth decade of life after which they also showed a steep negative association with age. The lateral ventricles showed continuous enlargement throughout the lifespan. Age was positively associated with inter-individual variability in the hippocampus and amygdala and the lateral ventricles. These results were robust to potential confounders and could be used to examine the functional significance of deviations from typical age-related morphometric patterns.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/hbm.25320DOI Listing
February 2021

Serotonin-specific neurons differentiated from human iPSCs form distinct subtypes with synaptic protein assembly.

J Neural Transm (Vienna) 2021 02 9;128(2):225-241. Epub 2021 Feb 9.

Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany.

Human induced pluripotent stem cells (hiPSCs) have revolutionized the generation of experimental disease models, but the development of protocols for the differentiation of functionally active neuronal subtypes with defined specification is still in its infancy. While dysfunction of the brain serotonin (5-HT) system has been implicated in the etiology of various neuropsychiatric disorders, investigation of functional human 5-HT specific neurons in vitro has been restricted by technical limitations. We describe an efficient generation of functionally active neurons from hiPSCs displaying 5-HT specification by modification of a previously reported protocol. Furthermore, 5-HT specific neurons were characterized using high-end fluorescence imaging including super-resolution microscopy in combination with electrophysiological techniques. Differentiated hiPSCs synthesize 5-HT, express specific markers, such as tryptophan hydroxylase 2 and 5-HT transporter, and exhibit an electrophysiological signature characteristic of serotonergic neurons, with spontaneous rhythmic activities, broad action potentials and large afterhyperpolarization potentials. 5-HT specific neurons form synapses reflected by the expression of pre- and postsynaptic proteins, such as Bassoon and Homer. The distribution pattern of Bassoon, a marker of the active zone along the soma and extensions of neurons, indicates functionality via volume transmission. Among the high percentage of 5-HT specific neurons (~ 42%), a subpopulation of CDH13 + cells presumably designates dorsal raphe neurons. hiPSC-derived 5-HT specific neuronal cell cultures reflect the heterogeneous nature of dorsal and median raphe nuclei and may facilitate examining the association of serotonergic neuron subpopulations with neuropsychiatric disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00702-021-02303-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7914246PMC
February 2021

REVERSE phenotyping-Can the phenotype following constitutive Tph2 gene inactivation in mice be transferred to children and adolescents with and without adhd?

Brain Behav 2021 May 1;11(5):e02054. Epub 2021 Feb 1.

Comparative Psychology, Institute of Experimental Psychology, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany.

Introduction: Experimental models of neuropsychiatric disorders, for example, ADHD, are used to mimic specific phenotypic traits of a complex human disorder. However, it remains unresolved to what extent the animal phenotype reflects the specific human trait. The null mutant mouse of the serotonin-synthesizing tryptophan hydroxylase-2 (Tph2 ) gene has been proposed as experimental model for ADHD with high face validity for impulsive, aggressive, and anxious behaviors. To validate this ADHD-like model, we examined the Tph2 phenotype in humans when considering allelic variation of TPH2 function ("reverse phenotyping").

Methods: 58 participants (6 females, 8-18 years) were examined, of whom 32 were diagnosed with ADHD. All participants were phenotyped for impulsivity, aggression, and anxiety using questionnaires, behavioral tests, and MRI scanning while performing the 4-choice serial reaction time task. Additionally, participants were genotyped for the TPH2 G-703T (rs4570625) polymorphism. To analyze the relation between TPH2 G-703T variants and the impulsive/aggressive/anxious phenotype, mediation analyses were performed using behavioral and MRI data as potential mediators.

Results: We found that the relation between TPH2 G-703T and aggression as part of the reverse Tph2 / phenotype was mediated by structure and function of the right middle and inferior frontal gyrus.

Conclusion: At the example of trait aggression, our results support the assumption that the Tph2 null mutant mouse reflects the TPH2 G-703T-dependent phenotype in humans. Additionally, we conclude that "reverse phenotyping" is a promising method to validate experimental models and human findings for refined analysis of disease mechanisms.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/brb3.2054DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8119824PMC
May 2021

Generation of induced pluripotent stem cell (iPSC) lines carrying a heterozygous (UKWMPi002-A-1) and null mutant knockout (UKWMPi002-A-2) of Cadherin 13 associated with neurodevelopmental disorders using CRISPR/Cas9.

Stem Cell Res 2021 03 11;51:102169. Epub 2021 Jan 11.

Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, Germany; Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M Sechenov First Moscow State Medical University, Moscow, Russia; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands. Electronic address:

Fibroblasts isolated from a skin biopsy of a healthy 46-year-old female were infected with Sendai virus containing the Yamanaka factors to produce transgene-free human induced pluripotent stem cells (iPSCs). CRISPR/Cas9 was used to generate isogenic cell lines with a gene dose-dependent deficiency of CDH13, a risk gene associated with neurodevelopmental and psychiatric disorders. Thereby, a heterozygous CDH13 knockout (CDH13) and a CDH13 null mutant (CDH13) iPSC line was obtained. All three lines showed expression of pluripotency-associated markers, the ability to differentiate into cells of the three germ layers in vitro, and a normal female karyotype.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scr.2021.102169DOI Listing
March 2021

Impulsivity and Venturesomeness in an Adult ADHD Sample: Relation to Personality, Comorbidity, and Polygenic Risk.

Front Psychiatry 2020 14;11:557160. Epub 2020 Dec 14.

Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany.

While impulsivity is a basic feature of attention-deficit/hyperactivity disorder (ADHD), no study explored the effect of different components of the Impulsiveness (Imp) and Venturesomeness (Vent) scale (IV7) on psychiatric comorbidities and an ADHD polygenic risk score (PRS). We used the IV7 self-report scale in an adult ADHD sample of 903 patients, 70% suffering from additional comorbid disorders, and in a subsample of 435 genotyped patients. Venturesomeness, unlike immediate Impulsivity, is not specific to ADHD. We consequently analyzed the influence of Imp and Vent also in the context of a PRS on psychiatric comorbidities of ADHD. Vent shows a distinctly different distribution of comorbidities, e.g., less anxiety and depression. PRS showed no effect on different ADHD comorbidities, but correlated with childhood hyperactivity. In a complementary analysis using principal component analysis with ADHD criteria, revised NEO Personality Inventory, Imp, Vent, and PRS, we identified three ADHD subtypes. These are an impulsive-neurotic type, an adventurous-hyperactive type with a stronger genetic component, and an anxious-inattentive type. Our study thus suggests the importance of adventurousness and the differential consideration of impulsivity in ADHD. The genetic risk is distributed differently between these subtypes, which underlines the importance of clinically motivated subtyping. Impulsivity subtyping might give insights into the organization of comorbid disorders in ADHD and different genetic background.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fpsyt.2020.557160DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7768074PMC
December 2020

Transcriptome profiling in adult attention-deficit hyperactivity disorder.

Eur Neuropsychopharmacol 2020 12 19;41:160-166. Epub 2020 Nov 19.

Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, Barcelona 08035, Spain; Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Department of Genetics, Microbiology & Statistics, University of Barcelona, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain. Electronic address:

Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder with an estimated heritability of around 70%. Although the largest genome-wide association study (GWAS) meta-analysis on ADHD identified independent loci conferring risk to the disorder, the molecular mechanisms underlying the genetic basis of the disorder remain to be elucidated. To explore ADHD biology, we ran a two-step transcriptome profiling in peripheral blood mononuclear cells (PBMCs) of 143 ADHD subjects and 169 healthy controls. Through this exploratory study we found eight differentially expressed genes in ADHD. These results highlight promising candidate genes and gene pathways for ADHD and support the use of peripheral tissues to assess gene expression signatures for ADHD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.euroneuro.2020.11.005DOI Listing
December 2020

Altered behaviour, dopamine and norepinephrine regulation in stressed mice heterozygous in TPH2 gene.

Prog Neuropsychopharmacol Biol Psychiatry 2021 Jun 28;108:110155. Epub 2020 Oct 28.

Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Department of Pharmacology, Oxford University, Oxford, United Kingdom. Electronic address:

Gene-environment interaction (GxE) determines the vulnerability of an individual to a spectrum of stress-related neuropsychiatric disorders. Increased impulsivity, excessive aggression, and other behavioural characteristics are associated with variants within the tryptophan hydroxylase-2 (Tph2) gene, a key enzyme in brain serotonin synthesis. This phenotype is recapitulated in naïve mice with complete, but not with partial Tph2 inactivation. Tph2 haploinsufficiency in animals reflects allelic variation of Tph2 facilitating the elucidation of respective GxE mechanisms. Recently, we showed excessive aggression and altered serotonin brain metabolism in heterozygous Tph2-deficient male mice (Tph2) after predator stress exposure. Here, we sought to extend these studies by investigating aggressive and anxiety-like behaviours, sociability, and the brain metabolism of dopamine and noradrenaline. Separately, Tph2 mice were examined for exploration activity in a novel environment and for the potentiation of helplessness in the modified swim test (ModFST). Predation stress procedure increased measures of aggression, dominancy, and suppressed sociability in Tph2 mice, which was the opposite of that observed in control mice. Anxiety-like behaviour was unaltered in the mutants and elevated in controls. Tph2 mice exposed to environmental novelty or to the ModFST exhibited increased novelty exploration and no increase in floating behaviour compared to controls, which is suggestive of resilience to stress and despair. High-performance liquid chromatography (HPLC) revealed significant genotype-dependent differences in the metabolism of dopamine, and norepinephrine within the brain tissue. In conclusion, environmentally challenged Tph2 mice exhibit behaviours that resemble the behaviour of non-stressed null mutants, which reveals how GxE interaction studies can unmask latent genetically determined predispositions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pnpbp.2020.110155DOI Listing
June 2021

Effect of serotonin transporter genotype on carbon dioxide-induced fear-related behavior in mice.

J Psychopharmacol 2020 12 24;34(12):1408-1417. Epub 2020 Oct 24.

Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands.

Background: Inhaling 35% carbon dioxide induces an emotional and symptomatic state in humans closely resembling naturally occurring panic attacks, the core symptom of panic disorder. Previous research has suggested a role of the serotonin system in the individual sensitivity to carbon dioxide. In line with this, we previously showed that a variant in the gene, encoding the serotonin transporter, moderates the fear response to carbon dioxide in humans. To study the etiological basis of carbon dioxide-reactivity and panic attacks in more detail, we recently established a translational mouse model.

Aim: The purpose of this study was to investigate whether decreased expression of the serotonin transporter affects the sensitivity to carbon dioxide.

Methods: Based on our previous work, wildtype and serotonin transporter deficient (+/-, -/-) mice were monitored while being exposed to carbon dioxide-enriched air. In wildtype and serotonin transporter +/- mice, also cardio-respiration was assessed.

Results: For most behavioral measures under air exposure, wildtype and serotonin transporter +/- mice did not differ, while serotonin transporter -/- mice showed more fear-related behavior. Carbon dioxide exposure evoked a marked increase in fear-related behaviors, independent of genotype, with the exception of time serotonin transporter -/- mice spent in the center zone of the modified open field test and freezing in the two-chamber test. On the physiological level, when inhaling carbon dioxide, the respiratory system was strongly activated and heart rate decreased independent of genotype.

Conclusion: Carbon dioxide is a robust fear-inducing stimulus. It evokes inhibitory behavioral responses such as decreased exploration and is associated with a clear respiratory profile independent of serotonin transporter genotype.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1177/0269881120959611DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7708670PMC
December 2020

Virtual Histology of Cortical Thickness and Shared Neurobiology in 6 Psychiatric Disorders.

JAMA Psychiatry 2021 Jan;78(1):47-63

Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, Maastricht University, the Netherlands.

Importance: Large-scale neuroimaging studies have revealed group differences in cortical thickness across many psychiatric disorders. The underlying neurobiology behind these differences is not well understood.

Objective: To determine neurobiologic correlates of group differences in cortical thickness between cases and controls in 6 disorders: attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), bipolar disorder (BD), major depressive disorder (MDD), obsessive-compulsive disorder (OCD), and schizophrenia.

Design, Setting, And Participants: Profiles of group differences in cortical thickness between cases and controls were generated using T1-weighted magnetic resonance images. Similarity between interregional profiles of cell-specific gene expression and those in the group differences in cortical thickness were investigated in each disorder. Next, principal component analysis was used to reveal a shared profile of group difference in thickness across the disorders. Analysis for gene coexpression, clustering, and enrichment for genes associated with these disorders were conducted. Data analysis was conducted between June and December 2019. The analysis included 145 cohorts across 6 psychiatric disorders drawn from the ENIGMA consortium. The numbers of cases and controls in each of the 6 disorders were as follows: ADHD: 1814 and 1602; ASD: 1748 and 1770; BD: 1547 and 3405; MDD: 2658 and 3572; OCD: 2266 and 2007; and schizophrenia: 2688 and 3244.

Main Outcomes And Measures: Interregional profiles of group difference in cortical thickness between cases and controls.

Results: A total of 12 721 cases and 15 600 controls, ranging from ages 2 to 89 years, were included in this study. Interregional profiles of group differences in cortical thickness for each of the 6 psychiatric disorders were associated with profiles of gene expression specific to pyramidal (CA1) cells, astrocytes (except for BD), and microglia (except for OCD); collectively, gene-expression profiles of the 3 cell types explain between 25% and 54% of variance in interregional profiles of group differences in cortical thickness. Principal component analysis revealed a shared profile of difference in cortical thickness across the 6 disorders (48% variance explained); interregional profile of this principal component 1 was associated with that of the pyramidal-cell gene expression (explaining 56% of interregional variation). Coexpression analyses of these genes revealed 2 clusters: (1) a prenatal cluster enriched with genes involved in neurodevelopmental (axon guidance) processes and (2) a postnatal cluster enriched with genes involved in synaptic activity and plasticity-related processes. These clusters were enriched with genes associated with all 6 psychiatric disorders.

Conclusions And Relevance: In this study, shared neurobiologic processes were associated with differences in cortical thickness across multiple psychiatric disorders. These processes implicate a common role of prenatal development and postnatal functioning of the cerebral cortex in these disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1001/jamapsychiatry.2020.2694DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7450410PMC
January 2021

The neurobiology of human aggressive behavior: Neuroimaging, genetic, and neurochemical aspects.

Prog Neuropsychopharmacol Biol Psychiatry 2021 Mar 19;106:110059. Epub 2020 Aug 19.

Institute of Biomedical Technologies, National Research Council of Italy, Segrate (Milan), Italy. Electronic address:

In modern societies, there is a strive to improve the quality of life related to risk of crimes which inevitably requires a better understanding of brain determinants and mediators of aggression. Neurobiology provides powerful tools to achieve this end. Pre-clinical and clinical studies show that changes in regional volumes, metabolism-function and connectivity within specific neural networks are related to aggression. Subregions of prefrontal cortex, insula, amygdala, basal ganglia and hippocampus play a major role within these circuits and have been consistently implicated in biology of aggression. Genetic variations in proteins regulating the synthesis, degradation, and transport of serotonin and dopamine as well as their signal transduction have been found to mediate behavioral variability observed in aggression. Gene-gene and gene-environment interactions represent additional important risk factors for aggressiveness. Considering the social burden of pathological forms of aggression, more basic and translational studies should be conducted to accelerate applications to clinical practice, justice courts, and policy making.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pnpbp.2020.110059DOI Listing
March 2021

The genetic architecture of human brainstem structures and their involvement in common brain disorders.

Nat Commun 2020 08 11;11(1):4016. Epub 2020 Aug 11.

Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway.

Brainstem regions support vital bodily functions, yet their genetic architectures and involvement in common brain disorders remain understudied. Here, using imaging-genetics data from a discovery sample of 27,034 individuals, we identify 45 brainstem-associated genetic loci, including the first linked to midbrain, pons, and medulla oblongata volumes, and map them to 305 genes. In a replication sample of 7432 participants most of the loci show the same effect direction and are significant at a nominal threshold. We detect genetic overlap between brainstem volumes and eight psychiatric and neurological disorders. In additional clinical data from 5062 individuals with common brain disorders and 11,257 healthy controls, we observe differential volume alterations in schizophrenia, bipolar disorder, multiple sclerosis, mild cognitive impairment, dementia, and Parkinson's disease, supporting the relevance of brainstem regions and their genetic architectures in common brain disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-17376-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7421944PMC
August 2020

Molecular and behavioural abnormalities in the FUS-tg mice mimic frontotemporal lobar degeneration: Effects of old and new anti-inflammatory therapies.

J Cell Mol Med 2020 09 15;24(17):10251-10257. Epub 2020 Jul 15.

Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.

Genetic mutations in FUS, a DNA/RNA-binding protein, are associated with inherited forms of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). A novel transgenic FUS[1-359]-tg mouse line recapitulates core hallmarks of human ALS in the spinal cord, including neuroinflammation and neurodegeneration, ensuing muscle atrophy and paralysis, as well as brain pathomorphological signs of FTLD. However, a question whether FUS[1-359]-tg mouse displays behavioural and brain pro-inflammatory changes characteristic for the FTLD syndrome was not addressed. Here, we studied emotional, social and cognitive behaviours, brain markers of inflammation and plasticity of pre-symptomatic FUS[1-359]-tg male mice, a potential FTLD model. These animals displayed aberrant behaviours and altered brain expression of inflammatory markers and related pathways that are reminiscent to the FTLD-like syndrome. FTLD-related behavioural and molecular Journal of Cellular and Molecular Medicine features were studied in the pre-symptomatic FUS[1-359]-tg mice that received standard or new ALS treatments, which have been reported to counteract the ALS-like syndrome in the mutants. We used anti-ALS drug riluzole (8 mg/kg/d), or anti-inflammatory drug, a selective blocker of cyclooxygenase-2 (celecoxib, 30 mg/kg/d) for 3 weeks, or a single intracerebroventricular (i.c.v.) infusion of human stem cells (Neuro-Cells, 500 000-CD34 ), which showed anti-inflammatory properties. Signs of elevated anxiety, depressive-like behaviour, cognitive deficits and abnormal social behaviour were less marked in FUS-tg-treated animals. Applied treatments have normalized protein expression of interleukin-1β (IL-1β) in the prefrontal cortex and the hippocampus, and of Iba-1 and GSK-3β in the hippocampus. Thus, the pre-symptomatic FUS[1-359]-tg mice demonstrate FTLD-like abnormalities that are attenuated by standard and new ALS treatments, including Neuro-Cell preparation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/jcmm.15628DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7520339PMC
September 2020

Stress-induced aggression in heterozygous TPH2 mutant mice is associated with alterations in serotonin turnover and expression of 5-HT6 and AMPA subunit 2A receptors.

J Affect Disord 2020 07 1;272:440-451. Epub 2020 May 1.

Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands; Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany; Institute of General Pathology and Pathophysiology, Moscow, Russia. Electronic address:

Background: The contribution of gene-environment interactions that lead to excessive aggression is poorly understood. Environmental stressors and mutations of the gene encoding tryptophan hydroxylase-2 (TPH2) are known to influence aggression. For example, TPH2 null mutant mice (Tph2-/-) are naturally highly aggressive, while heterozygous mice (Tph2+/-) lack a behavioral phenotype and are considered endophenotypically normal. Here we sought to discover whether an environmental stressor would affect the phenotype of the genetically 'susceptible' heterozygous mice (Tph2+/-).

Methods: Tph2+/- male mice or Tph2+/+ controls were subjected to a five-day long rat exposure stress paradigm. Brain serotonin metabolism and the expression of selected genes encoding serotonin receptors, AMPA receptors, and stress markers were studied.

Results: Stressed Tph2+/- mice displayed increased levels of aggression and social dominance, whereas Tph2+/+ animals became less aggressive and less dominant. Brain tissue concentrations of serotonin, its precursor hydroxytryptophan and its metabolite 5-hydroxyindoleacetic acid were significantly altered in all groups in the prefrontal cortex, striatum, amygdala, hippocampus and dorsal raphe after stress. Compared to non-stressed animals, the concentration of 5-hydroxytryptophan was elevated in the amygdala though decreased in the other brain structures. The overexpression of the AMPA receptor subunit, GluA2, and downregulation of 5-HT6 receptor, as well as overexpression of c-fos and glycogen-synthase-kinase-3β (GSK3-β), were found in most structures of the stressed Tph2+/- mice.

Limitations: Rescue experiments would help to verify causal relationships of reported changes.

Conclusions: The interaction of a partial TPH2 gene deficit with stress results in pathological aggression and molecular changes, and suggests that the presence of genetic susceptibility can augment aggression in seemingly resistant phenotypes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jad.2020.04.014DOI Listing
July 2020

Subcortical Brain Volume, Regional Cortical Thickness, and Cortical Surface Area Across Disorders: Findings From the ENIGMA ADHD, ASD, and OCD Working Groups.

Am J Psychiatry 2020 09 16;177(9):834-843. Epub 2020 Jun 16.

The full list of authors in the ENIGMA working groups, author affiliations, author disclosures, and acknowledgments are provided in online supplements.

Objective: Attention deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and obsessive-compulsive disorder (OCD) are common neurodevelopmental disorders that frequently co-occur. The authors sought to directly compare these disorders using structural brain imaging data from ENIGMA consortium data.

Methods: Structural T-weighted whole-brain MRI data from healthy control subjects (N=5,827) and from patients with ADHD (N=2,271), ASD (N=1,777), and OCD (N=2,323) from 151 cohorts worldwide were analyzed using standardized processing protocols. The authors examined subcortical volume, cortical thickness, and cortical surface area differences within a mega-analytical framework, pooling measures extracted from each cohort. Analyses were performed separately for children, adolescents, and adults, using linear mixed-effects models adjusting for age, sex, and site (and intracranial volume for subcortical and surface area measures).

Results: No shared differences were found among all three disorders, and shared differences between any two disorders did not survive correction for multiple comparisons. Children with ADHD compared with those with OCD had smaller hippocampal volumes, possibly influenced by IQ. Children and adolescents with ADHD also had smaller intracranial volume than control subjects and those with OCD or ASD. Adults with ASD showed thicker frontal cortices compared with adult control subjects and other clinical groups. No OCD-specific differences were observed across different age groups and surface area differences among all disorders in childhood and adulthood.

Conclusions: The study findings suggest robust but subtle differences across different age groups among ADHD, ASD, and OCD. ADHD-specific intracranial volume and hippocampal differences in children and adolescents, and ASD-specific cortical thickness differences in the frontal cortex in adults, support previous work emphasizing structural brain differences in these disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1176/appi.ajp.2020.19030331DOI Listing
September 2020

Consortium neuroscience of attention deficit/hyperactivity disorder and autism spectrum disorder: The ENIGMA adventure.

Hum Brain Mapp 2020 May 18. Epub 2020 May 18.

Division of Psychological & Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technischen Universität Dresden, Dresden, Germany.

Neuroimaging has been extensively used to study brain structure and function in individuals with attention deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) over the past decades. Two of the main shortcomings of the neuroimaging literature of these disorders are the small sample sizes employed and the heterogeneity of methods used. In 2013 and 2014, the ENIGMA-ADHD and ENIGMA-ASD working groups were respectively, founded with a common goal to address these limitations. Here, we provide a narrative review of the thus far completed and still ongoing projects of these working groups. Due to an implicitly hierarchical psychiatric diagnostic classification system, the fields of ADHD and ASD have developed largely in isolation, despite the considerable overlap in the occurrence of the disorders. The collaboration between the ENIGMA-ADHD and -ASD working groups seeks to bring the neuroimaging efforts of the two disorders closer together. The outcomes of case-control studies of subcortical and cortical structures showed that subcortical volumes are similarly affected in ASD and ADHD, albeit with small effect sizes. Cortical analyses identified unique differences in each disorder, but also considerable overlap between the two, specifically in cortical thickness. Ongoing work is examining alternative research questions, such as brain laterality, prediction of case-control status, and anatomical heterogeneity. In brief, great strides have been made toward fulfilling the aims of the ENIGMA collaborations, while new ideas and follow-up analyses continue that include more imaging modalities (diffusion MRI and resting-state functional MRI), collaborations with other large databases, and samples with dual diagnoses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/hbm.25029DOI Listing
May 2020

Mental health dished up-the use of iPSC models in neuropsychiatric research.

J Neural Transm (Vienna) 2020 11 7;127(11):1547-1568. Epub 2020 May 7.

Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany.

Genetic and molecular mechanisms that play a causal role in mental illnesses are challenging to elucidate, particularly as there is a lack of relevant in vitro and in vivo models. However, the advent of induced pluripotent stem cell (iPSC) technology has provided researchers with a novel toolbox. We conducted a systematic review using the PRISMA statement. A PubMed and Web of Science online search was performed (studies published between 2006-2020) using the following search strategy: hiPSC OR iPSC OR iPS OR stem cells AND schizophrenia disorder OR personality disorder OR antisocial personality disorder OR psychopathy OR bipolar disorder OR major depressive disorder OR obsessive compulsive disorder OR anxiety disorder OR substance use disorder OR alcohol use disorder OR nicotine use disorder OR opioid use disorder OR eating disorder OR anorexia nervosa OR attention-deficit/hyperactivity disorder OR gaming disorder. Using the above search criteria, a total of 3515 studies were found. After screening, a final total of 56 studies were deemed eligible for inclusion in our study. Using iPSC technology, psychiatric disease can be studied in the context of a patient's own unique genetic background. This has allowed great strides to be made into uncovering the etiology of psychiatric disease, as well as providing a unique paradigm for drug testing. However, there is a lack of data for certain psychiatric disorders and several limitations to present iPSC-based studies, leading us to discuss how this field may progress in the next years to increase its utility in the battle to understand psychiatric disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00702-020-02197-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7578166PMC
November 2020

Cellular effects and clinical implications of SLC2A3 copy number variation.

J Cell Physiol 2020 12 5;235(12):9021-9036. Epub 2020 May 5.

Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany.

SLC2A3 encodes the predominantly neuronal glucose transporter 3 (GLUT3), which facilitates diffusion of glucose across plasma membranes. The human brain depends on a steady glucose supply for ATP generation, which consequently fuels critical biochemical processes, such as axonal transport and neurotransmitter release. Besides its role in the central nervous system, GLUT3 is also expressed in nonneural organs, such as the heart and white blood cells, where it is equally involved in energy metabolism. In cancer cells, GLUT3 overexpression contributes to the Warburg effect by answering the cell's increased glycolytic demands. The SLC2A3 gene locus at chromosome 12p13.31 is unstable and prone to non-allelic homologous recombination events, generating multiple copy number variants (CNVs) of SLC2A3 which account for alterations in SLC2A3 expression. Recent associations of SLC2A3 CNVs with different clinical phenotypes warrant investigation of the potential influence of these structural variants on pathomechanisms of neuropsychiatric, cardiovascular, and immune diseases. In this review, we accumulate and discuss the evidence how SLC2A3 gene dosage may exert diverse protective or detrimental effects depending on the pathological condition. Cellular states which lead to increased energetic demand, such as organ development, proliferation, and cellular degeneration, appear particularly susceptible to alterations in SLC2A3 copy number. We conclude that better understanding of the impact of SLC2A3 variation on disease etiology may potentially provide novel therapeutic approaches specifically targeting this GLUT.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.29753DOI Listing
December 2020

Shared genetic background between children and adults with attention deficit/hyperactivity disorder.

Neuropsychopharmacology 2020 09 12;45(10):1617-1626. Epub 2020 Apr 12.

Department of Genetics, Institute of Biosciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.

Attention deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder characterized by age-inappropriate symptoms of inattention, impulsivity, and hyperactivity that persist into adulthood in the majority of the diagnosed children. Despite several risk factors during childhood predicting the persistence of ADHD symptoms into adulthood, the genetic architecture underlying the trajectory of ADHD over time is still unclear. We set out to study the contribution of common genetic variants to the risk for ADHD across the lifespan by conducting meta-analyses of genome-wide association studies on persistent ADHD in adults and ADHD in childhood separately and jointly, and by comparing the genetic background between them in a total sample of 17,149 cases and 32,411 controls. Our results show nine new independent loci and support a shared contribution of common genetic variants to ADHD in children and adults. No subgroup heterogeneity was observed among children, while this group consists of future remitting and persistent individuals. We report similar patterns of genetic correlation of ADHD with other ADHD-related datasets and different traits and disorders among adults, children, and when combining both groups. These findings confirm that persistent ADHD in adults is a neurodevelopmental disorder and extend the existing hypothesis of a shared genetic architecture underlying ADHD and different traits to a lifespan perspective.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41386-020-0664-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7419307PMC
September 2020

Metabolic, Molecular, and Behavioral Effects of Western Diet in Serotonin Transporter-Deficient Mice: Rescue by Heterozygosity?

Front Neurosci 2020 18;14:24. Epub 2020 Feb 18.

Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands.

Reduced function of the serotonin transporter (SERT) is associated with increased susceptibility to anxiety and depression and with type-2 diabetes, which is especially true in older women. Preference for a "Western diet" (WD), enriched with saturated fat, cholesterol, and sugars, may aggravate these conditions. In previous studies, decreased glucose tolerance, central and peripheral inflammation, dyslipidemia, emotional, cognitive, and social abnormalities were reported in WD-fed young female mice. We investigated the metabolic, molecular, and behavioral changes associated with a 3-week-long dietary regime of either the WD or control diet in 12-month-old female mice with three different genotypes: homozygous () gene knockout (: KO), heterozygous (: HET), or wild-type mice (: WT). In the WT-WD and KO-WD groups, but not in HET-WD-fed mice, most of changes induced by the WD paralleled those found in the younger mice, including brain overexpression of inflammatory marker Toll-like receptor 4 () and impaired hippocampus-dependent performance in the marble test. However, the 12-month-old female mice became obese. Control diet KO mice exhibited impaired hippocampal-dependent behaviors, increased brain expression of the serotonin receptors and , as well as increased and mitochondrial regulator, peroxisome proliferator-activated receptor gamma-coactivator-1a (). Paradoxically, these, and other changes, were reversed in KO-WD mutants, suggesting a complex interplay between deficiency and metabolic factors as well as potential compensatory molecular mechanisms that might be disrupted by the WD exposure. Most, but not all, of the changes in gene expression in the brain and liver of KO mice were not exhibited by the HET mice fed with either diet. Some of the WD-induced changes were similar in the KO-WD and HET-WD-fed mice, but the latter displayed a "rescued" phenotype in terms of diet-induced abnormalities in glucose tolerance, neuroinflammation, and hippocampus-dependent performance. Thus, complete versus partial inactivation in aged mice results in distinct metabolic, molecular, and behavioral consequences in response to the WD. Our findings show that mice are resilient to certain environmental challenges and support the concept of heterosis as evolutionary adaptive mechanism.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fnins.2020.00024DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7041415PMC
February 2020

Serotonin (5-HT) neuron-specific inactivation of Cadherin-13 impacts 5-HT system formation and cognitive function.

Neuropharmacology 2020 05 28;168:108018. Epub 2020 Feb 28.

Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany; Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands. Electronic address:

Genome-wide screening approaches identified the cell adhesion molecule Cadherin-13 (CDH13) as a risk factor for neurodevelopmental disorders, nevertheless the contribution of CDH13 to the disease mechanism remains obscure. CDH13 is involved in neurite outgrowth and axon guidance during early brain development and we previously provided evidence that constitutive CDH13 deficiency influences the formation of the raphe serotonin (5-HT) system by modifying neuron-radial glia interaction. Here, we dissect the specific impact of CDH13 on 5-HT system development and function using a 5-HT neuron-specific Cdh13 knockout mouse model (conditional Cdh13 knockout, Cdh13 cKO). Our results show that exclusive inactivation of CDH13 in 5-HT neurons selectively increases 5-HT neuron density in the embryonic dorsal raphe, with persistence into adulthood, and serotonergic innervation of the developing prefrontal cortex. At the behavioral level, adult Cdh13 cKO mice display delayed acquisition of several learning tasks and a subtle impulsive-like phenotype, with decreased latency in a sociability paradigm alongside with deficits in visuospatial memory. Anxiety-related traits were not observed in Cdh13 cKO mice. Our findings further support the critical role of CDH13 in the development of dorsal raphe 5-HT circuitries, a mechanism that may underlie specific clinical features observed in neurodevelopmental disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2020.108018DOI Listing
May 2020

Delaying memory decline: different options and emerging solutions.

Transl Psychiatry 2020 01 21;10(1):13. Epub 2020 Jan 21.

Department of Bioinformatics, Biocenter, University of Würzburg, 97074, Würzburg, Germany.

Memory decline can be a devastating disease and increases in aging Western populations. Memory enhancement technologies hold promise for this and other conditions. Approaches include stem cell transplantation, which improved memory in several animal studies as well as vaccination against Alzheimer´s disease (AD) by β-amyloid antibodies. For a positive clinical effect, the vaccine should probably be administered over a long period of time and before amyloid pathologies manifest in the brain. Different drugs, such as erythropoietin or antiplatelet therapy, improve memory in neuropsychiatric diseases or AD or at least in animal studies. Omega-3 polyunsaturated fatty acid-rich diets improve memory through the gut-brain axis by altering the gut flora through probiotics. Sports, dancing, and memory techniques (e.g., Method of Loci) utilize behavioral approaches for memory enhancement, and were effective in several studies. Augmented reality (AR) is an auspicious way for enhancing memory in real time. Future approaches may include memory prosthesis for head-injured patients and light therapy for restoring memory in AD. Memory enhancement in humans in health and disease holds big promises for the future. Memory training helps only in mild or no impairment. Clinical application requires further investigation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41398-020-0697-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7026464PMC
January 2020

Rhythm and blues: Influence of CLOCK T3111C on peripheral electrophysiological indicators of negative affective processing.

Physiol Behav 2020 05 13;219:112831. Epub 2020 Feb 13.

Personality and Individual Differences, Institute of Psychology I, Technische Universität Dresden, Dresden, Germany.

Dysfunction in the circadian system has been linked to emotion regulation and mood disorders with genetic variation in clock genes as likely contributors. Here, we focused on endophenotypes of affective processing and investigated in two independent samples of healthy individuals (n=99, n=108) whether genotypes of a functional single nucleotide polymorphism (SNP) in the gene encoding CLOCK (CLOCK T3111C, rs1801260) differed in physiological responses to emotional stimuli. Both samples underwent an emotional startle paradigm with startle responses being measured via EMG. In the second sample, skin conductance responses as well as corrugator and zygomaticus activity were also assessed. In both samples, CLOCK T3111C was associated with overall startle responses to loud noise bursts with T/T homozygotes showing consistently more marked responses. However, in the all-female second sample, the effects of CLOCK on skin conductance responses to the same loud noise bursts depended on hormone status: similar to the startle results, in free-cycling women T/T homozygotes showed more pronounced skin conductance response (SCR) compared to C allele carriers. The opposite was true for women using combined oral contraceptives (COC). A further CLOCK × hormone status interaction effect was found for corrugator activity. In free-cycling women, T/T homozygotes presented with less corrugator activity to affective pictures compared to C allele carriers, while the opposite pattern emerged for COC users. The findings emphasize the potential role of CLOCK for affect and mood.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.physbeh.2020.112831DOI Listing
May 2020

Neuro-Cells therapy improves motor outcomes and suppresses inflammation during experimental syndrome of amyotrophic lateral sclerosis in mice.

CNS Neurosci Ther 2020 05 23;26(5):504-517. Epub 2019 Dec 23.

Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.

Aims: Mutations in DNA/RNA-binding factor (fused-in-sarcoma) FUS and superoxide dismutase-1 (SOD-1) cause amyotrophic lateral sclerosis (ALS). They were reproduced in SOD-1-G93A (SOD-1) and new FUS[1-359]-transgenic (FUS-tg) mice, where inflammation contributes to disease progression. The effects of standard disease therapy and anti-inflammatory treatments were investigated using these mutants.

Methods: FUS-tg mice or controls received either vehicle, or standard ALS treatment riluzole (8 mg/kg/day), or anti-inflammatory drug a selective blocker of cyclooxygenase-2 celecoxib (30 mg/kg/day) for six weeks, or a single intracerebroventricular (i.c.v.) infusion of Neuro-Cells (a preparation of 1.39 × 10 mesenchymal and hemopoietic human stem cells, containing 5 × 10 of CD34 cells), which showed anti-inflammatory properties. SOD-1 mice received i.c.v.-administration of Neuro-Cells or vehicle.

Results: All FUS-tg-treated animals displayed less marked reductions in weight gain, food/water intake, and motor deficits than FUS-tg-vehicle-treated mice. Neuro-Cell-treated mutants had reduced muscle atrophy and lumbar motor neuron degeneration. This group but not celecoxib-FUS-tg-treated mice had ameliorated motor performance and lumbar expression of microglial activation marker, ionized calcium-binding adapter molecule-1 (Iba-1), and glycogen-synthase-kinase-3ß (GSK-3ß). The Neuro-Cells-treated-SOD-1 mice showed better motor functions than vehicle-treated-SOD-1 group.

Conclusion: The neuropathology in FUS-tg mice is sensitive to standard ALS treatments and Neuro-Cells infusion. The latter improves motor outcomes in two ALS models possibly by suppressing microglial activation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/cns.13280DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7163689PMC
May 2020