Publications by authors named "Klaudia Bagienski"

8 Publications

  • Page 1 of 1

Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative myeloproliferative neoplasms.

Blood 2016 Jan 30;127(3):325-32. Epub 2015 Sep 30.

CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Department of Internal Medicine I, Division of Hematology and Blood Coagulation, Medical University of Vienna, Vienna, Austria;

Essential thrombocythemia (ET) and primary myelofibrosis (PMF) are chronic diseases characterized by clonal hematopoiesis and hyperproliferation of terminally differentiated myeloid cells. The disease is driven by somatic mutations in exon 9 of CALR or exon 10 of MPL or JAK2-V617F in >90% of the cases, whereas the remaining cases are termed "triple negative." We aimed to identify the disease-causing mutations in the triple-negative cases of ET and PMF by applying whole-exome sequencing (WES) on paired tumor and control samples from 8 patients. We found evidence of clonal hematopoiesis in 5 of 8 studied cases based on clonality analysis and presence of somatic genetic aberrations. WES identified somatic mutations in 3 of 8 cases. We did not detect any novel recurrent somatic mutations. In 3 patients with clonal hematopoiesis analyzed by WES, we identified a somatic MPL-S204P, a germline MPL-V285E mutation, and a germline JAK2-G571S variant. We performed Sanger sequencing of the entire coding region of MPL in 62, and of JAK2 in 49 additional triple-negative cases of ET or PMF. New somatic (T119I, S204F, E230G, Y591D) and 1 germline (R321W) MPL mutation were detected. All of the identified MPL mutations were gain-of-function when analyzed in functional assays. JAK2 variants were identified in 5 of 57 triple-negative cases analyzed by WES and Sanger sequencing combined. We could demonstrate that JAK2-V625F and JAK2-F556V are gain-of-function mutations. Our results suggest that triple-negative cases of ET and PMF do not represent a homogenous disease entity. Cases with polyclonal hematopoiesis might represent hereditary disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood-2015-07-661835DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4752213PMC
January 2016

Molecular responses and chromosomal aberrations in patients with polycythemia vera treated with peg-proline-interferon alpha-2b.

Am J Hematol 2015 Apr 2;90(4):288-94. Epub 2015 Mar 2.

CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.

Fifty-one polycythemia vera (PV) patients were enrolled in the phase I/II clinical study PEGINVERA to receive a new formulation of pegylated interferon alpha (peg-proline-IFNα-2b, AOP2014/P1101). Peg-proline-IFNα-2b treatment led to high response rates on both hematologic and molecular levels. Hematologic and molecular responses were achieved for 46 and 18 patients (90 and 35% of the whole cohort), respectively. Although interferon alpha (IFNα) is known to be an effective antineoplastic therapy for a long time, it is currently not well understood which genetic alterations influence therapeutic outcomes. Apart from somatic changes in specific genes, large chromosomal aberrations could impact responses to IFNα. Therefore, we evaluated the interplay of cytogenetic changes and IFNα responses in the PEGINVERA cohort. We performed high-resolution SNP microarrays to analyze chromosomal aberrations prior and during peg-proline-IFNα-2b therapy. Similar numbers and types of chromosomal aberrations in responding and non-responding patients were observed, suggesting that peg-proline-IFNα-2b responses are achieved independently of chromosomal aberrations. Furthermore, complete cytogenetic remissions were accomplished in three patients, of which two showed more than one chromosomal aberration. These results imply that peg-proline-IFNα-2b therapy is an effective drug for PV patients, possibly including patients with complex cytogenetic changes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajh.23928DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4657499PMC
April 2015

TOPS: a versatile software tool for statistical analysis and visualization of combinatorial gene-gene and gene-drug interaction screens.

BMC Bioinformatics 2014 Apr 8;15:98. Epub 2014 Apr 8.

Research Center for Molecular Medicine of the Austrian Academy of Sciences (CeMM), Vienna, Austria.

Background: Measuring the impact of combinations of genetic or chemical perturbations on cellular fitness, sometimes referred to as synthetic lethal screening, is a powerful method for obtaining novel insights into gene function and drug action. Especially when performed at large scales, gene-gene or gene-drug interaction screens can reveal complex genetic interactions or drug mechanism of action or even identify novel therapeutics for the treatment of diseases.The result of such large-scale screen results can be represented as a matrix with a numeric score indicating the cellular fitness (e.g. viability or doubling time) for each double perturbation. In a typical screen, the majority of combinations do not impact the cellular fitness. Thus, it is critical to first discern true "hits" from noise. Subsequent data exploration and visualization methods can assist to extract meaningful biological information from the data. However, despite the increasing interest in combination perturbation screens, no user friendly open-source program exists that combines statistical analysis, data exploration tools and visualization.

Results: We developed TOPS (Tool for Combination Perturbation Screen Analysis), a Java and R-based software tool with a simple graphical user interface that allows the user to import, analyze, filter and plot data from double perturbation screens as well as other compatible data. TOPS was designed in a modular fashion to allow the user to add alternative importers for data formats or custom analysis scripts not covered by the original release.We demonstrate the utility of TOPS on two datasets derived from functional genetic screens using different methods. Dataset 1 is a gene-drug interaction screen and is based on Luminex xMAP technology. Dataset 2 is a gene-gene short hairpin (sh)RNAi screen exploring the interactions between deubiquitinating enzymes and a number of prominent oncogenes using massive parallel sequencing (MPS).

Conclusions: TOPS provides the benchtop scientist with a free toolset to analyze, filter and visualize data from functional genomic gene-gene and gene-drug interaction screens with a flexible interface to accommodate different technologies and analysis algorithms in addition to those already provided here. TOPS is freely available for academic and non-academic users and is released as open source.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1471-2105-15-98DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4077039PMC
April 2014

Somatic mutations of calreticulin in myeloproliferative neoplasms.

N Engl J Med 2013 Dec 10;369(25):2379-90. Epub 2013 Dec 10.

From CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences (T.K., A.S.H., H.N., J.D.M., N.C.C.T., T.B., D.C., G.I.V., K.B., F.S., C.C., M. Six, A.S., C.B., G.S.-F., R.K.) and the Department of Internal Medicine I, Division of Hematology and Blood Coagulation, Medical University of Vienna (H.G., B.G., M. Schalling, R.K.) - both in Vienna; and the Department of Hematology Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo (E.R., D.P., C.M., I.C.C., E.S., V.F., C.E., L.M., C.P., M.C.), and the Department of Molecular Medicine, University of Pavia (L.M., M.C.) - both in Pavia, Italy.

Background: Approximately 50 to 60% of patients with essential thrombocythemia or primary myelofibrosis carry a mutation in the Janus kinase 2 gene (JAK2), and an additional 5 to 10% have activating mutations in the thrombopoietin receptor gene (MPL). So far, no specific molecular marker has been identified in the remaining 30 to 45% of patients.

Methods: We performed whole-exome sequencing to identify somatically acquired mutations in six patients who had primary myelofibrosis without mutations in JAK2 or MPL. Resequencing of CALR, encoding calreticulin, was then performed in cohorts of patients with myeloid neoplasms.

Results: Somatic insertions or deletions in exon 9 of CALR were detected in all patients who underwent whole-exome sequencing. Resequencing in 1107 samples from patients with myeloproliferative neoplasms showed that CALR mutations were absent in polycythemia vera. In essential thrombocythemia and primary myelofibrosis, CALR mutations and JAK2 and MPL mutations were mutually exclusive. Among patients with essential thrombocythemia or primary myelofibrosis with nonmutated JAK2 or MPL, CALR mutations were detected in 67% of those with essential thrombocythemia and 88% of those with primary myelofibrosis. A total of 36 types of insertions or deletions were identified that all cause a frameshift to the same alternative reading frame and generate a novel C-terminal peptide in the mutant calreticulin. Overexpression of the most frequent CALR deletion caused cytokine-independent growth in vitro owing to the activation of signal transducer and activator of transcription 5 (STAT5) by means of an unknown mechanism. Patients with mutated CALR had a lower risk of thrombosis and longer overall survival than patients with mutated JAK2.

Conclusions: Most patients with essential thrombocythemia or primary myelofibrosis that was not associated with a JAK2 or MPL alteration carried a somatic mutation in CALR. The clinical course in these patients was more indolent than that in patients with the JAK2 V617F mutation. (Funded by the MPN Research Foundation and Associazione Italiana per la Ricerca sul Cancro.).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1056/NEJMoa1311347DOI Listing
December 2013

Complex patterns of chromosome 11 aberrations in myeloid malignancies target CBL, MLL, DDB1 and LMO2.

PLoS One 2013 16;8(10):e77819. Epub 2013 Oct 16.

CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.

Exome sequencing of primary tumors identifies complex somatic mutation patterns. Assignment of relevance of individual somatic mutations is difficult and poses the next challenge for interpretation of next generation sequencing data. Here we present an approach how exome sequencing in combination with SNP microarray data may identify targets of chromosomal aberrations in myeloid malignancies. The rationale of this approach is that hotspots of chromosomal aberrations might also harbor point mutations in the target genes of deletions, gains or uniparental disomies (UPDs). Chromosome 11 is a frequent target of lesions in myeloid malignancies. Therefore, we studied chromosome 11 in a total of 813 samples from 773 individual patients with different myeloid malignancies by SNP microarrays and complemented the data with exome sequencing in selected cases exhibiting chromosome 11 defects. We found gains, losses and UPDs of chromosome 11 in 52 of the 813 samples (6.4%). Chromosome 11q UPDs frequently associated with mutations of CBL. In one patient the 11qUPD amplified somatic mutations in both CBL and the DNA repair gene DDB1. A duplication within MLL exon 3 was detected in another patient with 11qUPD. We identified several common deleted regions (CDR) on chromosome 11. One of the CDRs associated with de novo acute myeloid leukemia (P=0.013). One patient with a deletion at the LMO2 locus harbored an additional point mutation on the other allele indicating that LMO2 might be a tumor suppressor frequently targeted by 11p deletions. Our chromosome-centered analysis indicates that chromosome 11 contains a number of tumor suppressor genes and that the role of this chromosome in myeloid malignancies is more complex than previously recognized.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0077819PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3797696PMC
June 2014

Identification of genomic aberrations associated with disease transformation by means of high-resolution SNP array analysis in patients with myeloproliferative neoplasm.

Am J Hematol 2011 Dec 22;86(12):974-9. Epub 2011 Sep 22.

Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy.

Myeloproliferative neoplasms (MPN) include polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). These disorders may undergo phenotypic shifts, and may specifically evolve into secondary myelofibrosis (MF) or acute myeloid leukemia (AML). We studied genomic changes associated with these transformations in 29 patients who had serial samples collected in different phases of disease. Genomic DNA from granulocytes, i.e., the myeloproliferative genome, was processed and hybridized to genome-wide human SNP 6.0 arrays. Most patients in chronic phase had chromosomal regions with uniparental disomy (UPD) and/or copy number changes. Disease progression to secondary MF or AML was associated with the acquisition of additional chromosomal aberrations in granulocytes (P = 0.002). A close relationship was observed between aberrations of chromosome 9p (UPD and/or gain) and progression from PV to post-PV MF (P = 0.002). The acquisition of one or more aberrations involving chromosome 5, 7, or 17p was specifically associated with progression to AML (OR 5.9, 95% CI 1.2-27.7, P = 0.006), and significantly affected overall survival (HR 18, 95% CI 1.9-164, P = 0.01). These observations indicate that disease progression from chronic-phase MPN to secondary MF or AML is associated with specific chromosomal aberrations that can be detected by means of high-resolution SNP array analysis of granulocyte DNA.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajh.22166DOI Listing
December 2011

Genome integrity of myeloproliferative neoplasms in chronic phase and during disease progression.

Blood 2011 Jul 29;118(1):167-76. Epub 2011 Apr 29.

Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.

Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs) are clonal myeloid disorders with increased production of terminally differentiated cells. The disease course is generally chronic, but some patients show disease progression (secondary myelofibrosis or accelerated phase) and/or leukemic transformation. We investigated chromosomal aberrations in 408 MPN samples using high-resolution single-nucleotide polymorphism microarrays to identify disease-associated somatic lesions. Of 408 samples, 37.5% had a wild-type karyotype and 62.5% harbored at least 1 chromosomal aberration. We identified 25 recurrent aberrations that were found in 3 or more samples. An increased number of chromosomal lesions was significantly associated with patient age, as well as with disease progression and leukemic transformation, but no association was observed with MPN subtypes, Janus kinase 2 (JAK2) mutational status, or disease duration. Aberrations of chromosomes 1q and 9p were positively associated with disease progression to secondary myelofibrosis or accelerated phase. Changes of chromosomes 1q, 7q, 5q, 6p, 7p, 19q, 22q, and 3q were positively associated with post-MPN acute myeloid leukemia. We mapped commonly affected regions to single target genes on chromosomes 3p (forkhead box P1 [FOXP1]), 4q (tet oncogene family member 2 [TET2]), 7p (IKAROS family zinc finger 1 [IKZF1]), 7q (cut-like homeobox 1 [CUX1]), 12p (ets variant 6 [ETV6]), and 21q (runt-related transcription factor 1 [RUNX1]). Our data provide insight into the genetic complexity of MPNs and implicate new genes involved in disease progression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood-2011-01-331678DOI Listing
July 2011