Publications by authors named "Kiyofumi Yamamoto"

20 Publications

  • Page 1 of 1

Presynaptic NK1 Receptor Activation by Substance P Suppresses EPSCs via Nitric Oxide Synthesis in the Rat Insular Cortex.

Neuroscience 2021 02 25;455:151-164. Epub 2020 Dec 25.

Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Division of Immunology and Pathobiology, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan. Electronic address:

Substance P (SP) regulates inhibitory synaptic transmission mediated by GABA receptors in the cerebral cortex; however, SP-mediated regulation of excitatory synaptic transmission remains poorly understood. We performed whole-cell patch-clamp recordings from pyramidal neurons to examine the effects of SP on excitatory postsynaptic currents (EPSCs) mediated via AMPA receptors in the insular cortex (IC), which is involved in nociceptive information processing. First, EPSCs evoked by minimal electrical stimulation (eEPSCs) including stepwise EPSCs and failure events, were examined. SP dose-dependently suppressed mean eEPSC amplitude, partially due to an increase in the failure rate of eEPSCs. The SP-induced suppression of eEPSCs was accompanied by an increase in the paired-pulse ratio and was inhibited by the preapplication of SR140333, an NK1 receptor antagonist. [Sar,Met(O)]-substance P, an NK1 receptor-selective agonist, mimicked the effects of SP on eEPSCs and decreased the frequency of miniature EPSCs (mEPSCs) without changing the average mEPSC amplitude. Considering that most NK1 receptors in the cerebral cortex are expressed in nitric oxide synthase (NOS)-positive GABAergic neurons, the SP-induced suppressive effect on EPSCs may be mediated by nitric oxide (NO) in this subtype of GABAergic neurons. NO imaging using the fluorescent probe DAX-J2 Red supports this hypothesis: SP increased the fluorescence intensity of DAX-J2 Red in some GABAergic neurons. Furthermore, both L-NAME, an NOS inhibitor, and PTIO, an NO scavenger, diminished the SP-induced suppression of eEPSCs. These results suggest that the activation of presynaptic NK1 receptors contributes to SP-induced eEPSC suppression by activating the NO synthesis pathway in GABAergic neurons. (246 words).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2020.12.012DOI Listing
February 2021

Gap junction with MLO-A5 osteoblast-like cell line induces ALP and BSP transcription of 3T3-L1 pre-adipocyte like cell line via Hspb1 while retaining adipogenic differentiation ability.

Bone 2020 12 16;141:115596. Epub 2020 Aug 16.

Division of Microscopic Anatomy, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata 951-8122, Japan. Electronic address:

In bone tissues, gap junctions form direct links between the cytoplasm of an osteocyte and another adjacent osteocyte or osteoblast, which underlie both bone formation and bone resorption. We have previously demonstrated that alkaline phosphatase (ALP) and bone sialoprotein (BSP), which are osteoblast markers, were induced in mesenchymal stem cells (MSCs) co-cultured with osteoblast-like cell line. However, the molecular mechanism of this process has not been fully addressed. Furthermore, few advances have been made toward elucidating the communication networks that link the status of committed cells such as (pre-) adipocytes that differentiated from MSCs as well as osteoblasts. Therefore, the objective of the present study was to investigate the mechanism underlying the communication network between pre-adipocytes and osteoblasts. We evaluated the effect of co-culture with osteoblast on the cell status of pre-adipocytes using murine osteoblast-like cell line, MLO-A5, and pre-adipocyte-like cell line, 3T3-L1, respectively. The results presented here demonstrated that osteoblasts and pre-adipocytes communicate via gap junctions, and the ensuing drastic increase in ALP and BSP transcription in co-cultured pre-adipocytes was induced, at least partly, via heat shock protein family B member 1 (Hspb1). In addition, terminal differentiation into adipocytes was suppressed in pre-adipocytes during co-culture with osteoblast without loss of adipogenic differentiation ability. Interestingly, after co-culture with osteoblasts, isolated co-cultured pre-adipocytes were able to differentiate to adipocytes as well as original pre-adipocytes. These results suggest that gap junctional communication with osteoblasts suppressed adipogenic differentiation of pre-adipocytes without loss of adipogenic differentiation ability.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bone.2020.115596DOI Listing
December 2020

Extracellular glucose-dependent IPSC enhancement by leptin in fast-spiking to pyramidal neuron connections via JAK2-PI3K pathway in the rat insular cortex.

Neuropharmacology 2019 05 14;149:133-148. Epub 2019 Feb 14.

Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Molecular Dynamics Imaging Unit, RIKEN Centre for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan. Electronic address:

Leptin is produced in the adipocytes and plays a pivotal role in regulation of energy balance by controlling appetite and metabolism. Leptin receptors are widely distributed in the brain, especially in the hypothalamus, hippocampus, and neocortex. The insular cortex (IC) processes gustatory and visceral information, which functionally correlate to feeding behavior. However, it is still an open issue whether and how leptin modulates IC neural activities. Our paired whole-cell patch-clamp recordings using IC slice preparations demonstrated that unitary inhibitory postsynaptic currents (uIPSCs) but not uEPSCs were potentiated by leptin in the connections between pyramidal (PNs) and fast-spiking neurons (FSNs). The leptin-induced increase in uIPSC amplitude was accompanied by a decrease in paired-pulse ratio. Under application of inhibitors of JAK2-PI3K but not MAPK pathway, leptin did not change uIPSC amplitude. Variance-mean analysis revealed that leptin increased the release probability but not the quantal size and the number of release site. These electrophysiological findings suggest that the leptin-induced uIPSC increase is mediated by activation of JAK2-PI3K pathway in presynaptic FSNs. An in vivo optical imaging revealed that leptin application decreased excitatory propagation in IC induced by electrical stimulation of IC. These leptin-induced effects were not observed under the low energy states: low glucose concentration (2.5 mM) in vitro and one-day-fasting condition in vivo. However, leptin enhanced uIPSCs under application of low glucose with an AMPK inhibitor. These results suggest that leptin suppresses IC excitation by facilitating GABA release in FSN→PN connections, which may not occur under a hunger state.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2019.02.021DOI Listing
May 2019

Trigeminal Nerve Transection-Induced Neuroplastic Changes in the Somatosensory and Insular Cortices in a Rat Ectopic Pain Model.

eNeuro 2019 Jan-Feb;6(1). Epub 2019 Jan 28.

Department of Pharmacology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo 101-8310, Japan.

The primary sensory cortex processes competitive sensory inputs. Ablation of these competitive inputs induces neuroplastic changes in local cortical circuits. However, information concerning cortical plasticity induced by a disturbance of competitive nociceptive inputs is limited. Nociceptive information from the maxillary and mandibular molar pulps converges at the border between the ventral secondary somatosensory cortex (S2) and insular oral region (IOR); therefore, S2/IOR is a suitable target for examining the cortical changes induced by a disturbance of noxious inputs, which often causes neuropathic pain and allodynia. We focused on the plastic changes in S2/IOR excitation in a model of rats subjected to inferior alveolar nerve transection (IANX). Our optical imaging using a voltage-sensitive dye (VSD) revealed that the maxillary molar pulp stimulation-induced excitatory propagation was expanded one to two weeks after IANX at the macroscopic level. At the cellular level, based on Ca imaging using two-photon microscopy, the amplitude of the Ca responses and the number of responding neurons in S2/IOR increased in both excitatory and inhibitory neurons. The laser scanning photostimulation (LSPS) revealed that Layer II/III pyramidal and GABAergic fast-spiking neurons in S2/IOR received larger excitatory inputs from Layer IV in the IANX models, which supports the findings obtained by the macroscopic and microscopic optical imaging. Furthermore, the inhibitory postsynaptic inputs to the pyramidal neurons were decreased in the IANX models, suggesting suppression of inhibitory synaptic transmission onto excitatory neurons. These results suggest that IANX induces plastic changes in S2/IOR by changing the local excitatory and inhibitory circuits.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1523/ENEURO.0462-18.2019DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6348450PMC
April 2019

Menthol-induced facilitation of cerebrocortical excitatory propagation induced by air puff stimulation of the nasal cavity in the rat: An optical imaging study.

Neurosci Lett 2019 03 13;696:87-92. Epub 2018 Dec 13.

Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Molecular Dynamics Imaging Unit, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.

Temperature plays a critical role in the sensation of airflow in the nasal mucosa. Neural activities of the ethmoidal nerve, a trigeminal afferent, responding to airflow are suppressed by warm airflow, whereas cold airflow enhances the ethmoidal nerve activities, which is mimicked by application of menthol, a cold-sensitive TRPM8 receptor agonist. However, it has been an open issue how menthol modulates the spatiotemporal profiles of neural activities of somatosensory cortical neurons. In this study, we assessed neural responses to an air puff stimulation (100 ms) to the nasal cavity in the absence or presence of l-menthol using an optical imaging technique with a voltage-sensitive dye in the primary cortex (S1) of urethane-anesthetized rats. A weak air puff application (15 psi) without l-menthol induced neural excitation in a part of the contralateral S1. The air puff stimulation with l-menthol significantly increased the optical signal intensity, expanded the activated area, and shortened the latency, compared to those in the absence of l-menthol. These results suggest that activation of cold-sensitive TRPM8 receptors sharpens airflow sensation in the nasal cavity and expands the receptive field, especially toward the pharynx, which may contribute to enhanced flavor perception.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2018.12.018DOI Listing
March 2019

Opposite Roles in Short-Term Plasticity for N-Type and P/Q-Type Voltage-Dependent Calcium Channels in GABAergic Neuronal Connections in the Rat Cerebral Cortex.

J Neurosci 2018 11 24;38(46):9814-9828. Epub 2018 Sep 24.

Department of Pharmacology,

Neurotransmitter release is triggered by Ca influx through voltage-dependent Ca channels (VDCCs). Distinct expression patterns of VDCC subtypes localized on the synaptic terminal affect intracellular Ca dynamics induced by action potential-triggered Ca influx. However, it has been unknown whether the expression pattern of VDCC subtypes depends on each axon terminal or neuronal subtype. Furthermore, little information is available on how these VDCC subtypes regulate the release probability of neurotransmitters. To address these questions, we performed multiple whole-cell patch-clamp recordings from GABAergic neurons in the insular cortex of either the male or the female rat. The paired-pulse ratio (PPR; 50 ms interstimulus interval) varied widely among inhibitory connections between GABAergic neurons. The PPR of unitary IPSCs was enhanced by ω-conotoxin GVIA (CgTx; 3 μm), an N-type VDCC blocker, whereas blockade of P/Q-type VDCCs by ω-agatoxin IVA (AgTx, 200 nm) decreased the PPR. In the presence of CgTx, application of 4 mm [Ca] or of roscovitine, a P/Q-type activator, increased the PPR. These results suggest that the recruitment of P/Q-type VDCCs increases the PPR, whereas N-type VDCCs suppress the PPR. Furthermore, we found that charybdotoxin or apamin, blockers of Ca-dependent K channels, with AgTx increased the PPR, suggesting that Ca-dependent K channels are coupled to N-type VDCCs and suppress the PPR in GABAergic neuronal terminals. Variance-mean analysis with changing [Ca] showed a negative correlation between the PPR and release probability in GABAergic synapses. These results suggest that GABAergic neurons differentially express N-type and/or P/Q-type VDCCs and that these VDCCs regulate the GABA release probability in distinct manners. GABAergic neuronal axons target multiple neurons and release GABA triggered by Ca influx via voltage-dependent Ca channels (VDCCs), including N-type and P/Q-type channels. Little is known about VDCC expression patterns in GABAergic synaptic terminals and their role in short-term plasticity. We focused on inhibitory synaptic connections between GABAergic neurons in the cerebral cortex using multiple whole-cell patch-clamp recordings and found different expression patterns of VDCCs in the synaptic terminals branched from a single presynaptic neuron. Furthermore, we observed facilitative and depressive short-term plasticity of IPSCs mediated by P/Q-type and N-type VDCCs, respectively. These results suggest that VDCC expression patterns regulate distinctive types of synaptic transmission in each GABAergic axon terminal even though they are branched from a common presynaptic neuron.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1523/JNEUROSCI.0337-18.2018DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6596248PMC
November 2018

Histamine H Heteroreceptors Suppress Glutamatergic and GABAergic Synaptic Transmission in the Rat Insular Cortex.

Front Neural Circuits 2017 9;11:85. Epub 2017 Nov 9.

Department of Pharmacology, Nihon University School of Dentistry, Chiyoda-ku, Japan.

Histamine H receptors are autoreceptors that regulate histamine release from histaminergic neuronal terminals. The cerebral cortex, including the insular cortex (IC), expresses abundant H receptors; however, the functions and mechanisms of H receptors remain unknown. The aim of this study was to elucidate the functional roles of H in synaptic transmission in layer V of the rat IC. Unitary excitatory and inhibitory postsynaptic currents (uEPSCs and uIPSCs) were obtained through paired whole-cell patch-clamp recording in cerebrocortical slice preparations. The H receptor agonist, R-α-methylhistamine (RAMH), reduced the uEPSC amplitude obtained from pyramidal cell to pyramidal cell or GABAergic interneuron connections. Similarly, RAMH reduced the uIPSC amplitude in GABAergic interneuron to pyramidal cell connections. RAMH-induced decreases in both the uEPSC and uIPSC amplitudes were accompanied by increases in the failure rate and paired-pulse ratio. JNJ 5207852 dihydrochloride or thioperamide, H receptor antagonists, inhibited RAMH-induced suppression of uEPSCs and uIPSCs. Unexpectedly, thioperamide alone increased the uIPSC amplitude, suggesting that thioperamide was likely to act as an inverse agonist. Miniature EPSC or IPSC recordings support the hypothesis that the activation of H receptors suppresses the release of glutamate and GABA from presynaptic terminals. The colocalization of H receptors and glutamate decarboxylase or vesicular glutamate transport protein 1 in presynaptic axon terminals was confirmed through double pre-embedding microscopy, using a combination of pre-embedding immunogold and immunoperoxidase techniques. The suppressive regulation of H heteroreceptors on synaptic transmission might mediate the regulation of sensory information processes, such as gustation and visceral sensation, in the IC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fncir.2017.00085DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5684127PMC
August 2018

Ablation of C-fibers decreases quantal size of GABAergic synaptic transmission in the insular cortex.

Neuroscience 2017 Dec 6;365:179-191. Epub 2017 Oct 6.

Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; RIKEN Center for Molecular Imaging Science, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan. Electronic address:

The primary sensory cortex exhibits neuroplastic changes responding to sensory disturbances, and GABAergic synaptic transmission plays a critical role in the regulation of plasticity. The insular cortex (IC) integrates orofacial nociceptive signals conveyed via myelinated Aδ- and unmyelinated C-fibers. However, it has been unknown whether a disturbance of nociceptive inputs, such as a deletion of the peripheral nerves, alters GABAergic local circuit in IC. The present study elucidated GABAergic synaptic transmission in the model rat whose C-fibers were ablated by capsaicin injection 1-2 days after birth. In vivo optical imaging revealed that capsaicin-treated rats showed a facilitative excitatory propagation in IC responding to dental pulp stimulation. Whole-cell patch-clamp recording from pyramidal neurons (Pyr) demonstrated that capsaicin-treated rats showed the smaller amplitude of miniature inhibitory postsynaptic currents (IPSCs) than sham-treated rats without changing the frequency. Furthermore, replacement of extracellular Ca to Sr, which induces an asynchronous release of neurotransmitters in the quantal size, induced a smaller amplitude of asynchronous unitary IPSCs recorded from fast-spiking GABAergic interneuron to Pyr connections in capsaicin-treated rats than sham-treated rats. These results suggest that capsaicin treatment depresses IPSCs via a postsynaptic mechanism. To confirm this possibility, the variance-mean analysis of unitary IPSCs was employed and we found that quantal size of GABAergic synaptic transmission was smaller in capsaicin-treated rats than in sham-treated rats. These results suggest that ablation of C-fibers induces plastic changes in GABAergic synaptic transmission by decreasing postsynaptic GABA receptor-mediated conductance, which is a possible mechanism of the facilitative excitation in IC of capsaicin-treated rats.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2017.09.052DOI Listing
December 2017

Opioid subtype- and cell-type-dependent regulation of inhibitory synaptic transmission in the rat insular cortex.

Neuroscience 2016 Dec 8;339:478-490. Epub 2016 Oct 8.

Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan. Electronic address:

The insular cortex (IC) plays a principal role in the regulation of pain processing. Although opioidergic agonists depress cortical excitatory synaptic transmission, little is known about opioidergic roles in inhibitory synaptic transmission. In the IC, the opioid receptors differentially regulate the excitatory propagation: agonists of the mu (MOR), delta (DOR), and kappa (KOR) exhibit suppressive, facilitative, and little effects, respectively. Thus, we aimed to examine the effects of opioid receptor agonists on unitary inhibitory postsynaptic currents (uIPSCs) in the IC. Pyramidal and GABAergic neurons in the rat IC were recorded by a multiple whole-cell patch-clamp technique. [D-Ala,N-Me-Phe,Gly-ol]-Enkephalin acetate salt (DAMGO), an MOR agonist, reduced uIPSC amplitude by 74% in fast-spiking GABAergic interneuron (FS)→FS connections without a significant effect on FS→pyramidal cell (Pyr) connections. These effects of DAMGO were also observed in non-FS→FS and non-FS→Pyr connections: DAMGO reduced the uIPSC amplitude in non-FS→FS but not in non-FS→Pyr connections. DAMGO-induced depression of uIPSCs was blocked by the MOR antagonist, D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH. The DOR agonist, [D-Pen]-Enkephalin hydrate (DPDPE), reduced uIPSC amplitude by 39% in FS→FS and by 49% in FS→Pyr connections, which was antagonized by the DOR antagonist, naltrindole. However, DPDPE had little effect on non-FS→FS/Pyr connections. (±)-trans-U-50488 methanesulfonate salt (U50488), a KOR agonist, had little effect on uIPSC in FS→FS/Pyr connections. These results suggest that MOR-induced uIPSC depression in FS→FS and non-FS→FS, but not FS→Pyr and non-FS→Pyr connections, results in the depression of excitatory propagation in the IC, which may be an underlying mechanism of the powerful analgesic effects of MOR agonists.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2016.10.004DOI Listing
December 2016

Osteocytes up-regulate the terminal differentiation of pre-osteoblasts via gap junctions.

Biochem Biophys Res Commun 2015 Jan 15;456(1):1-6. Epub 2014 Nov 15.

Department of Pathology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan. Electronic address:

We examined cell-to-cell interaction between pre-osteoblasts and osteocytes using MC3T3-E1 and MLO-Y4, respectively. First, GFP expressing MC3T3-E1 (E1-GFP) cells were generated to isolate the cells from co-culture with MLO-Y4. No changes were observed in the expression of osteogenic transcription factors Runx2, Osterix, Dlx5 and Msx2, but expression of alkaline phosphatase (ALP) and bone sialoprotein (BSP) in E1-GFP co-cultured with MLO-Y4 was 300-400-fold greater than that in mono-cultured E1-GFP. In addition, mineralized nodule formation was drastically increased in co-cultured E1-GFP cells compared to mono-cultured cells. Patch clamp assay showed the presence of gap junctions between E1-GFP and MLO-Y4. Furthermore, when the gap junction inhibitor carbenoxolone (CBX) was added to the culture, increased expression of ALP and BSP in E1-GFP co-cultured with MLO-Y4 was suppressed. These results suggest that gap junction detected between pre-osteoblasts and osteocytes plays an important role on the terminal differentiation of pre-osteoblasts.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2014.10.128DOI Listing
January 2015

Osteogenic gene transcription is regulated via gap junction-mediated cell-cell communication.

Stem Cells Dev 2015 Jan;24(2):214-27

1 Department of Pathology, Nihon University School of Dentistry , Tokyo, Japan .

An analytical study of cell-cell communications between murine osteoblast-like MLO-A5 cells and bone marrow mesenchymal stem cell (BMSC)-like C3H10T1/2 cells was performed. C3H10T1/2 cells expressing green fluorescent protein (10T-GFP cells) were generated to enable the isolation of the BMSC-like cells from co-cultures with MLO-A5 cells. The mRNA expression levels of several osteogenic transcription factors (Runx2, Osterix, Dlx5, and Msx2) did not differ between the co-cultured and mono-cultured 10T-GFP cells, but those of alkaline phosphatase (ALP) and bone sialoprotein (BSP) were 300- to 400-fold higher in the co-cultured cells. Patch clamp and biocytin transfer assays revealed gap junction-mediated communication between co-cultured 10T-GFP and MLO-A5 cells. The addition of a gap junction inhibitor suppressed the increases in the expression levels of the ALP and BSP mRNAs in co-cultured 10T-GFP cells. Furthermore, the histone acetylation levels were higher in co-cultured 10T-GFP cells than in mono-cultured 10T-GFP cells. These results suggest that osteoblasts and BMSCs associate via gap junctions, and that gap junction-mediated signaling induces histone acetylation that leads to elevated transcription of the genes encoding ALP and BSP in BMSCs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1089/scd.2014.0060DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4291207PMC
January 2015

Fast-spiking cell to pyramidal cell connections are the most sensitive to propofol-induced facilitation of GABAergic currents in rat insular cortex.

Anesthesiology 2014 Jul;121(1):68-78

From the Department of Anesthesiology (Y.K., Y.O.), and Department of Pharmacology (K.Y., N.K., M.K.), Nihon University School of Dentistry, Tokyo, Japan; Division of Immunology and Pathobiology (Y.K., Y.O.), and Division of Oral and Craniomaxillofacial Research (K.Y., N.K., M.K.), Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan; and Molecular Dynamics Imaging Unit, RIKEN Center for Life Science Technologies, Kobe, Japan (M.K.).

Background: Propofol facilitates γ-aminobutyric acid-mediated inhibitory synaptic transmission. In the cerebral cortex, γ-aminobutyric acidergic interneurons target both excitatory pyramidal cells (Pyr) and fast-spiking (FS) and non-FS interneurons. Therefore, the propofol-induced facilitation of inhibitory transmission results in a change in the balance of excitatory and inhibitory inputs to Pyr. However, it is still unknown how propofol modulates γ-aminobutyric acidergic synaptic transmission in each combination of Pyr and interneurons.

Methods: The authors examined whether propofol differentially regulates inhibitory postsynaptic currents (IPSCs) depending on the presynaptic and postsynaptic cell subtypes using multiple whole cell patch clamp recording from γ-aminobutyric acidergic interneurons and Pyr in rat insular cortex.

Results: Propofol (10 μM) consistently prolonged decay kinetics of unitary IPSCs (uIPSCs) in all types of inhibitory connections without changing paired-pulse ratio of the second to first uIPSC amplitude or failure rate. The FS→Pyr connections exhibited greater enhancement of uIPSC charge transfer (2.2 ± 0.5 pC, n = 36) compared with that of FS→FS/non-FS connections (0.9 ± 0.2 pC, n = 37), whereas the enhancement of charge transfer in non-FS→Pyr (0.3 ± 0.1 pC, n = 15) and non-FS→FS/non-FS connections (0.2 ± 0.1 pC, n = 36) was smaller to those in FS→Pyr/FS/non-FS. Electrical synapses between FS pairs were not affected by propofol.

Conclusions: The principal inhibitory connections (FS→Pyr) are the most sensitive to propofol-induced facilitation of uIPSCs, which is likely mediated by postsynaptic mechanisms. This preferential uIPSC enhancement in FS→Pyr connections may result in suppressed neural activities of projection neurons, which in turn reduces excitatory outputs from cortical local circuits.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/ALN.0000000000000183DOI Listing
July 2014

Reciprocal regulation of inhibitory synaptic transmission by nicotinic and muscarinic receptors in rat nucleus accumbens shell.

J Physiol 2013 Nov 9;591(22):5745-63. Epub 2013 Sep 9.

M. Kobayashi: Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.

Medium spiny neurones (MSNs) in the nucleus accumbens (NAc) are the principal neurones whose activities are regulated by GABAergic inputs from MSNs and fast-spiking interneurones (FSNs). Cholinergic interneurones play important roles in the regulation of activity in MSNs; however, how acetylcholine modulates inhibitory synaptic transmission from MSNs/FSNs to MSNs remains unknown. We performed paired whole-cell patch-clamp recordings from MSNs and FSNs in rat NAc shell slice preparations and examined cholinergic effects on unitary inhibitory postsynaptic currents (uIPSCs). Carbachol (1 μM) suppressed uIPSC amplitude by 58.3 ± 8.0% in MSN→MSN connections, accompanied by increases in paired-pulse ratio and failure rate, suggesting that acetylcholine reduces the probability of GABA release from the synaptic terminals of MSNs. Carbachol-induced uIPSC suppression was antagonised by 100 μM atropine, and was mimicked by pilocarpine (1 μM) and acetylcholine (1 μM) but not nicotine (1 μM). Application of AM251 slightly reduced carbachol-induced uIPSC suppression (30.8 ± 8.9%), suggesting an involvement of endocannabinoid signalling in muscarinic suppression of uIPSCs. In contrast, FSN→MSN connections showed that pilocarpine had little effect on the uIPSC amplitude, whereas both nicotine and acetylcholine facilitated uIPSC amplitude, with decreases in failure rate and paired-pulse ratio, suggesting that nicotine-induced uIPSC facilitation is mediated by presynaptic mechanisms. Miniature IPSC recordings support these hypotheses of presynaptic cholinergic mechanisms. These results suggest a differential role for muscarinic and nicotinic receptors in GABA release, which depends on presynaptic neuronal subtypes in the NAc shell.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1113/jphysiol.2013.258558DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3853507PMC
November 2013

Functional neuroimaging of aversive taste-related areas in the alert rat revealed by positron emission tomography.

J Neurosci Res 2013 Oct 30;91(10):1363-70. Epub 2013 Jul 30.

Department of Pharmacology, Nihon University School of Dentistry, Tokyo, Japan; Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan; RIKEN Center for Molecular Imaging Science, Kobe, Japan.

Among noninvasive functional brain imaging techniques, (18) F-fluorodeoxyglucose (FDG)-positron emission tomography (PET) has a comparative advantage in detecting active brain regions in freely locomoting animals. We developed an [(18) F]FDG-PET protocol that visualizes active brain regions that respond preferentially to citrate-induced multiple behaviors in freely locomoting rats. In addition, c-Fos immunohistochemistry, an activity-dependent mapping, was performed to examine whether the areas detected by PET correspond to regions with c-Fos-immunopositive neurons. Citrate (0.1 M) was intraorally applied to detect activated brain regions responding to gustation and the rejection behaviors including gaping and tongue protrusion, which would potently activate the limbic system. PET images during citrate stimulation were subtracted from those obtained during free locomotion or during application of distilled water. Citrate increased FDG signals in multiple gustation-related regions: the nucleus accumbens (core and shell), the ventromedial nucleus of the thalamus, the basolateral and central nuclei of the amygdala, the hypothalamus, and the insular cortex. In addition, the ventrolateral striatum and the cingulate and entorhinal cortices, which have received less attention in the field of gustatory studies, also showed an increase in FDG signals. As expected, c-Fos-immunopositive cells were also found in these regions, suggesting that increased FDG signals induced by intraoral citrate injection are likely to reflect neural activity in these regions. Our [(18) F]FDG-PET protocol reveals the contributions of multiple brain regions responding to aversive taste in freely locomoting rats, and this approach may aid in the identification of unknown neural networks especially relating to the limbic information processing.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jnr.23252DOI Listing
October 2013

Kinetics of GABAB autoreceptor-mediated suppression of GABA release in rat insular cortex.

J Neurophysiol 2012 Mar 21;107(5):1431-42. Epub 2011 Dec 21.

Dept. of Pharmacology, Nihon Univ. School of Dentistry, Tokyo, Japan.

Release of GABA is controlled by presynaptic GABA receptor type B (GABA(B)) autoreceptors at GABAergic terminals. However, there is no direct evidence that GABA(B) autoreceptors are activated by GABA release from their own terminals, and precise profiles of GABA(B) autoreceptor-mediated suppression of GABA release remain unknown. To explore these issues, we performed multiple whole-cell, patch-clamp recordings from layer V rat insular cortex. Both unitary inhibitory and excitatory postsynaptic currents (uIPSCs and uEPSCs, respectively) were recorded by applying a five-train depolarizing pulse injection at 20 Hz. In connections from both fast-spiking (FS) and non-FS interneurons to pyramidal cells, the GABA(B) receptor antagonist CGP 52432 had little effect on the initial uIPSC amplitude. However, uIPSCs, responding to later pulses, were effectively facilitated. This CGP 52432-induced facilitation was prominent in the fourth uIPSCs, which were evoked 150 ms after the first uIPSC. The facilitation of uIPSCs was accompanied by an increase in the paired-pulse ratio. In addition, analysis of the coefficient of variation suggests the involvement of presynaptic mechanisms in CGP 52432-induced uIPSC facilitation. Paired-pulse stimulation (interstimulus interval = 150 ms) of presynaptic FS cells revealed that the second uIPSC was also facilitated by CGP 52432, which had little effect on the amplitude and interevent interval of miniature IPSCs. In contrast, uEPSCs, responding to all five stimulations of a presynaptic pyramidal cell, were less affected by CGP 52432. These results suggest that a single presynaptic action potential is sufficient to activate GABA(B) autoreceptors and to suppress GABA release in the cerebral cortex.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.00813.2011DOI Listing
March 2012

Distinct target cell-dependent forms of short-term plasticity of the central visceral afferent synapses of the rat.

BMC Neurosci 2010 Oct 20;11:134. Epub 2010 Oct 20.

Laboratory of Neurophysiology, Department of Neuroscience, Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan.

Background: The visceral afferents from various cervico-abdominal sensory receptors project to the dorsal vagal complex (DVC), which is composed of the nucleus of the solitary tract (NTS), the area postrema and the dorsal motor nucleus of the vagus nerve (DMX), via the vagus and glossopharyngeal nerves and then the solitary tract (TS) in the brainstem. While the excitatory transmission at the TS-NTS synapses shows strong frequency-dependent suppression in response to repeated stimulation of the afferents, the frequency dependence and short-term plasticity at the TS-DMX synapses, which also transmit monosynaptic information from the visceral afferents to the DVC neurons, remain largely unknown.

Results: Recording of the EPSCs activated by paired or repeated TS stimulation in the brainstem slices of rats revealed that, unlike NTS neurons whose paired-pulse ratio (PPR) is consistently below 0.6, the distribution of the PPR of DMX neurons shows bimodal peaks that are composed of type I (PPR, 0.6-1.5; 53% of 120 neurons recorded) and type II (PPR, < 0.6; 47%) neurons. Some of the type I DMX neurons showed paired-pulse potentiation. The distinction of these two types depended on the presynaptic release probability and the projection target of the postsynaptic cells; the distinction was not dependent on the location or soma size of the cell, intensity or site of the stimulation, the latency, standard deviation of latency or the quantal size. Repeated stimulation at 20 Hz resulted in gradual and potent decreases in EPSC amplitude in the NTS and type II DMX neurons, whereas type I DMX neurons displayed only slight decreases, which indicates that the DMX neurons of this type could be continuously activated by repeated firing of primary afferent fibers at a high (~10 Hz) frequency.

Conclusions: These two general types of short-term plasticity might contribute to the differential activation of distinct vago-vagal reflex circuits, depending on the firing frequency and type of visceral afferents.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1471-2202-11-134DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2978217PMC
October 2010

Postsynaptic cell type-dependent cholinergic regulation of GABAergic synaptic transmission in rat insular cortex.

J Neurophysiol 2010 Oct 4;104(4):1933-45. Epub 2010 Aug 4.

Nihon University School of Dentistry, Department of Pharmacology, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.

The cerebral cortex consists of multiple neuron subtypes whose electrophysiological properties exhibit diverse modulation patterns in response to neurotransmitters, including noradrenaline and acetylcholine (ACh). We performed multiple whole cell patch-clamp recording from layer V GABAergic interneurons and pyramidal cells of rat insular cortex (IC) to examine whether cholinergic effects on unitary inhibitory postsynaptic currents (uIPSCs) are differentially regulated by ACh receptors, depending on their presynaptic and postsynaptic cell subtypes. In fast-spiking (FS) to pyramidal cell synapses, carbachol (10 μM) invariably decreased uIPSC amplitude by 51.0%, accompanied by increases in paired-pulse ratio (PPR) of the second to first uIPSC amplitude, coefficient of variation (CV) of the first uIPSC amplitude, and failure rate. Carbachol-induced uIPSC suppression was dose dependent and blocked by atropine, a muscarinic ACh receptor antagonist. Similar cholinergic suppression was observed in non-FS to pyramidal cell synapses. In contrast, FS to FS/non-FS cell synapses showed heterogeneous effects on uIPSC amplitude by carbachol. In roughly 40% of pairs, carbachol suppressed uIPSCs by 35.8%, whereas in a similar percentage of pairs uIPSCs were increased by 34.8%. Non-FS to FS/non-FS cell synapses also showed carbachol-induced uIPSC facilitation by 29.2% in about half of the pairs, whereas nearly 40% of pairs showed carbachol-induced suppression of uIPSCs by 40.3%. Carbachol tended to increase uIPSC amplitude in interneuron-to-interneuron synapses with higher PPR, suggesting that carbachol facilitates GABA release in interneuron synapses with lower release probability. These results suggest that carbachol-induced effects on uIPSCs are not homogeneous but preiotropic: i.e., cholinergic modulation of GABAergic synaptic transmission is differentially regulated depending on postsynaptic neuron subtypes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.00438.2010DOI Listing
October 2010

Presynaptic interneuron subtype- and age-dependent modulation of GABAergic synaptic transmission by beta-adrenoceptors in rat insular cortex.

J Neurophysiol 2010 May 24;103(5):2876-88. Epub 2010 Mar 24.

Department of Pharmacology, Nihon University School of Dentistry, Tokyo, Japan.

beta-Adrenoceptors play a crucial role in the regulation of taste aversion learning in the insular cortex (IC). However, beta-adrenergic effects on inhibitory synaptic transmission mediated by gamma-aminobutyric acid (GABA) remain unknown. To elucidate the mechanisms of beta-adrenergic modulation of inhibitory synaptic transmission, we performed paired whole cell patch-clamp recordings from layer V GABAergic interneurons and pyramidal cells of rat IC aged from postnatal day 17 (PD17) to PD46 and examined the effects of isoproterenol, a beta-adrenoceptor agonist, on unitary inhibitory postsynaptic currents (uIPSCs). Isoproterenol (100 microM) induced facilitating effects on uIPSCs in 33.3% of cell pairs accompanied by decreases in coefficient of variation (CV) of the first uIPSC amplitude and paired-pulse ratio (PPR) of the second to first uIPSC amplitude, whereas 35.9% of pairs showed suppressive effects of isoproterenol on uIPSC amplitude obtained from fast spiking (FS) to pyramidal cell pairs. Facilitatory effects of isoproterenol were frequently observed in FS-pyramidal cell pairs at > or =PD24. On the other hand, isoproterenol suppressed uIPSC amplitude by 52.3 and 39.8% in low-threshold spike (LTS)-pyramidal and late spiking (LS)-pyramidal cell pairs, respectively, with increases in CV and PPR. The isoproterenol-induced suppressive effects were blocked by preapplication of 100 microM propranolol, a beta-adrenoceptor antagonist. There was no significant correlation between age and changes of uIPSCs in LTS-/LS-pyramidal cell pairs. These results suggest the presence of differential mechanisms in presynaptic GABA release and/or postsynaptic GABA(A) receptor-related assemblies among interneuron subtypes. Age- and interneuron subtype-specific beta-adrenergic modulation of IPSCs may contribute to experience-dependent plasticity in the IC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.00972.2009DOI Listing
May 2010

Effects of the Ih blockers CsCl and ZD7288 on inherited epilepsy in Mongolian gerbils.

Exp Anim 2008 Jul;57(4):377-84

Department of Bioinformatics, Graduate School of Engineering, Soka University, Hachioji, Tokyo, Japan.

The h current (Ih) is an inwardly mixed cationic conductance activated by membrane hyperpolarization. We previously demonstrated that the Ih blockers CsCl and ZD7288 can significantly increase the threshold of electrically induced paroxysmal discharge in the rabbit hippocampus. In the present study, we examined the effects of these Ih blockers on inherited epilepsy in Mongolian gerbils. Seizure-sensitive Mongolian gerbils (n=29) underwent a series of seizure induction tests (including gentle handling for 1-2 min and being dropped from a height of 50 cm) before, during and after oral administration of 10 mM CsCl or 0.1 mM ZD7288. Their behavioral responses were classified into 3 grades corresponding to no seizure (score: 0), partial seizure (score: 1), and generalized seizure (score: 2). In the CsCl experiments (n=10), the average scores were 1.09 +/- 0.10 before administration, 0.82 +/- 0.10 during administration, and 0.96 +/- 0.10 after administration. CsCl significantly increased the ratio of grade 0 behavioral responses (P<0.01, compared with the value before administration), and decreased the ratio of grade 1 responses (P<0.01). In the ZD7288 experiments (n=19), the average scores were 0.99 +/- 0.07 before administration, 0.52 +/- 0.06 (P<0.01) during administration, and 0.76 +/- 0.07 (P<0.05) after administration. ZD7288 significantly increased the ratio of grade 0 behavioral responses (P<0.01), and decreased the ratio of grade 1 responses (P<0.05) and grade 2 responses (P<0.01). We conclude that both CsCl and ZD7288 have an anti-epileptic effect on inherited epilepsy in Mongolian gerbils.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1538/expanim.57.377DOI Listing
July 2008

Inhibition of Alzheimer amyloid aggregation with sulfated glycopolymers.

Biomacromolecules 2007 Jul 22;8(7):2129-34. Epub 2007 Jun 22.

Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan.

Glycopolymers carrying sulfated saccharides with modest sugar contents (11% and 28%) were found to suppress the formation of amyloid fibrils by amyloid beta peptides (Abeta(1-42), Abeta(1-40), and Abeta(25-35)), as evaluated by thioflavin T assays and atomic force microscopy observation. Circular dichroism spectra showed that the conformation of amyloid beta peptides depended on the glycopolymer additives, and that the glycopolymer additives reduced the beta-sheet contents. Neutralization activity was confirmed by in vitro assay with HeLa cells. The sulfate group and the appropriate sugar contents were essential for the inhibitory effect.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm0701402DOI Listing
July 2007