Publications by authors named "Kisha D Grady"

1 Publications

  • Page 1 of 1

Risk assessment of occupational exposure to anesthesia Isoflurane in the hospital and veterinary settings.

Sci Total Environ 2021 Apr 5;783:146894. Epub 2021 Apr 5.

Environmental Health and Radiation Safety, Temple University, Philadelphia, PA, USA.

Despite the modern ventilation and waste anesthetic gas (WAG) scavenging systems, occupational exposure to common volatile anesthesia, isoflurane, can occur in the hospital and veterinary settings, but limited information exists on potential exposure and health risk of isoflurane. We assessed exposure dose rates and risks among clinicians and veterinary professionals from occupational exposure to isoflurane. Through a critical review of open literature (1965 to 2020), we summarized potential adverse effects and exposure scenarios of isoflurane among the professional groups, including anesthetists, nurses, operating room personnel, researchers, and/or veterinarians. Deterministic United States National Research Council/Environmental Protection Agency's risk assessment framework (hazard identification, dose-response relationship, exposure assessment and risk characterization) was used to compute inhalation Reference Doses (RfDs), Average Daily Doses (ADDs), and Hazard Quotient (HQ) values-an established measure of non-carcinogenic (systemic) risks-from exposure to isoflurane to workers in hospital and veterinary settings. We identified the central nervous system as the main target for isoflurane, and that isoflurane has dose-dependent effects on cardiac hemodynamics, can impair pulmonary functions and potentially cross the utero-placental barrier leading to congenital malformation in fetus. Based on the modelled RfDs (range 0.8003-7.55 mg/kg-day) and ADDs (range 0.071-1.9617 mg/kg-day), we estimated 56 different HQ values, of which 5 HQs were higher than 1 (range 1.099-2.4512) under high exposure scenarios. Our results suggest a significant non-carcinogenic risk from isoflurane exposures among workers in the occupational settings. The findings underscore the need to significantly minimize isoflurane release to protect workers' health in the hospital and veterinary environments.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.146894DOI Listing
April 2021