Publications by authors named "Kirsten Mandl"

6 Publications

  • Page 1 of 1

Genomic insights into the formation of human populations in East Asia.

Nature 2021 Mar 22;591(7850):413-419. Epub 2021 Feb 22.

Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.

The deep population history of East Asia remains poorly understood owing to a lack of ancient DNA data and sparse sampling of present-day people. Here we report genome-wide data from 166 East Asian individuals dating to between 6000 BC and AD 1000 and 46 present-day groups. Hunter-gatherers from Japan, the Amur River Basin, and people of Neolithic and Iron Age Taiwan and the Tibetan Plateau are linked by a deeply splitting lineage that probably reflects a coastal migration during the Late Pleistocene epoch. We also follow expansions during the subsequent Holocene epoch from four regions. First, hunter-gatherers from Mongolia and the Amur River Basin have ancestry shared by individuals who speak Mongolic and Tungusic languages, but do not carry ancestry characteristic of farmers from the West Liao River region (around 3000 BC), which contradicts theories that the expansion of these farmers spread the Mongolic and Tungusic proto-languages. Second, farmers from the Yellow River Basin (around 3000 BC) probably spread Sino-Tibetan languages, as their ancestry dispersed both to Tibet-where it forms approximately 84% of the gene pool in some groups-and to the Central Plain, where it has contributed around 59-84% to modern Han Chinese groups. Third, people from Taiwan from around 1300 BC to AD 800 derived approximately 75% of their ancestry from a lineage that is widespread in modern individuals who speak Austronesian, Tai-Kadai and Austroasiatic languages, and that we hypothesize derives from farmers of the Yangtze River Valley. Ancient people from Taiwan also derived about 25% of their ancestry from a northern lineage that is related to, but different from, farmers of the Yellow River Basin, which suggests an additional north-to-south expansion. Fourth, ancestry from Yamnaya Steppe pastoralists arrived in western Mongolia after around 3000 BC but was displaced by previously established lineages even while it persisted in western China, as would be expected if this ancestry was associated with the spread of proto-Tocharian Indo-European languages. Two later gene flows affected western Mongolia: migrants after around 2000 BC with Yamnaya and European farmer ancestry, and episodic influences of later groups with ancestry from Turan.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-021-03336-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7993749PMC
March 2021

A genetic history of the pre-contact Caribbean.

Nature 2021 02 23;590(7844):103-110. Epub 2020 Dec 23.

Department of Genetics, Harvard Medical School, Boston, MA, USA.

Humans settled the Caribbean about 6,000 years ago, and ceramic use and intensified agriculture mark a shift from the Archaic to the Ceramic Age at around 2,500 years ago. Here we report genome-wide data from 174 ancient individuals from The Bahamas, Haiti and the Dominican Republic (collectively, Hispaniola), Puerto Rico, Curaçao and Venezuela, which we co-analysed with 89 previously published ancient individuals. Stone-tool-using Caribbean people, who first entered the Caribbean during the Archaic Age, derive from a deeply divergent population that is closest to Central and northern South American individuals; contrary to previous work, we find no support for ancestry contributed by a population related to North American individuals. Archaic-related lineages were >98% replaced by a genetically homogeneous ceramic-using population related to speakers of languages in the Arawak family from northeast South America; these people moved through the Lesser Antilles and into the Greater Antilles at least 1,700 years ago, introducing ancestry that is still present. Ancient Caribbean people avoided close kin unions despite limited mate pools that reflect small effective population sizes, which we estimate to be a minimum of 500-1,500 and a maximum of 1,530-8,150 individuals on the combined islands of Puerto Rico and Hispaniola in the dozens of generations before the individuals who we analysed lived. Census sizes are unlikely to be more than tenfold larger than effective population sizes, so previous pan-Caribbean estimates of hundreds of thousands of people are too large. Confirming a small and interconnected Ceramic Age population, we detect 19 pairs of cross-island cousins, close relatives buried around 75 km apart in Hispaniola and low genetic differentiation across islands. Genetic continuity across transitions in pottery styles reveals that cultural changes during the Ceramic Age were not driven by migration of genetically differentiated groups from the mainland, but instead reflected interactions within an interconnected Caribbean world.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-020-03053-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7864882PMC
February 2021

Human auditory ossicles as an alternative optimal source of ancient DNA.

Genome Res 2020 03 25;30(3):427-436. Epub 2020 Feb 25.

Institute of Archaeological Sciences, Eötvös Loránd University, H-1088 Budapest, Hungary.

DNA recovery from ancient human remains has revolutionized our ability to reconstruct the genetic landscape of the past. Ancient DNA research has benefited from the identification of skeletal elements, such as the cochlear part of the osseous inner ear, that provides optimal contexts for DNA preservation; however, the rich genetic information obtained from the cochlea must be counterbalanced against the loss of morphological information caused by its sampling. Motivated by similarities in developmental processes and histological properties between the cochlea and auditory ossicles, we evaluate the ossicles as an alternative source of ancient DNA. We show that ossicles perform comparably to the cochlea in terms of DNA recovery, finding no substantial reduction in data quantity and minimal differences in data quality across preservation conditions. Ossicles can be sampled from intact skulls or disarticulated petrous bones without damage to surrounding bone, and we argue that they should be used when available to reduce damage to human remains. Our results identify another optimal skeletal element for ancient DNA analysis and add to a growing toolkit of sampling methods that help to better preserve skeletal remains for future research while maximizing the likelihood that ancient DNA analysis will produce useable results.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/gr.260141.119DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7111520PMC
March 2020

The spread of steppe and Iranian-related ancestry in the islands of the western Mediterranean.

Nat Ecol Evol 2020 03 24;4(3):334-345. Epub 2020 Feb 24.

Instituto Internacional de Investigaciones Prehistóricas de Cantabria, Universidad de Cantabria-Gobierno de Cantabria-Banco Santander, Santander, Spain.

Steppe-pastoralist-related ancestry reached Central Europe by at least 2500 BC, whereas Iranian farmer-related ancestry was present in Aegean Europe by at least 1900 BC. However, the spread of these ancestries into the western Mediterranean, where they have contributed to many populations that live today, remains poorly understood. Here, we generated genome-wide ancient-DNA data from the Balearic Islands, Sicily and Sardinia, increasing the number of individuals with reported data from 5 to 66. The oldest individual from the Balearic Islands (~2400 BC) carried ancestry from steppe pastoralists that probably derived from west-to-east migration from Iberia, although two later Balearic individuals had less ancestry from steppe pastoralists. In Sicily, steppe pastoralist ancestry arrived by ~2200 BC, in part from Iberia; Iranian-related ancestry arrived by the mid-second millennium BC, contemporary to its previously documented spread to the Aegean; and there was large-scale population replacement after the Bronze Age. In Sardinia, nearly all ancestry derived from the island's early farmers until the first millennium BC, with the exception of an outlier from the third millennium BC, who had primarily North African ancestry and who-along with an approximately contemporary Iberian-documents widespread Africa-to-Europe gene flow in the Chalcolithic. Major immigration into Sardinia began in the first millennium BC and, at present, no more than 56-62% of Sardinian ancestry is from its first farmers. This value is lower than previous estimates, highlighting that Sardinia, similar to every other region in Europe, has been a stage for major movement and mixtures of people.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41559-020-1102-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7080320PMC
March 2020

The formation of human populations in South and Central Asia.

Science 2019 09;365(6457)

Earth Institute, University College Dublin, Dublin 4, Ireland.

By sequencing 523 ancient humans, we show that the primary source of ancestry in modern South Asians is a prehistoric genetic gradient between people related to early hunter-gatherers of Iran and Southeast Asia. After the Indus Valley Civilization's decline, its people mixed with individuals in the southeast to form one of the two main ancestral populations of South Asia, whose direct descendants live in southern India. Simultaneously, they mixed with descendants of Steppe pastoralists who, starting around 4000 years ago, spread via Central Asia to form the other main ancestral population. The Steppe ancestry in South Asia has the same profile as that in Bronze Age Eastern Europe, tracking a movement of people that affected both regions and that likely spread the distinctive features shared between Indo-Iranian and Balto-Slavic languages.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.aat7487DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6822619PMC
September 2019