Publications by authors named "Kiran Javkar"

3 Publications

  • Page 1 of 1

Genomic Drivers of Multidrug-Resistant Affecting Vulnerable Patient Populations in the United States and Abroad.

mBio 2021 01 26;12(1). Epub 2021 Jan 26.

Massachusetts Host-Microbiome Center, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA

Multidrug-resistant (MDR) infections have been identified globally among men who have sex with men (MSM). The highly drug-resistant phenotype often confounds initial antimicrobial therapy, placing patients at risk for adverse outcomes, the development of more drug-resistant strains, and additional treatment failures. New macrolide-resistant strains complicate treatment further as azithromycin is a next-in-line antibiotic for MDR strains, and an antibiotic-strain combination confounded by gaps in validated clinical breakpoints for clinical laboratories to interpret macrolide resistance in We present the first high-resolution genomic analyses of 2,097 U.S. isolates, including those from MDR outbreaks. A sentinel shigellosis case in an MSM patient revealed a strain carrying 12 plasmids, of which two carried known resistance genes, the pKSR100-related plasmid pMHMC-004 and spA-related plasmid pMHMC-012. Genomic-epidemiologic analyses of isolates revealed high carriage rates of pMHMC-004 predominantly in U.S. isolates from men and not in other demographic groups. Isolates genetically related to the sentinel case further harbored elevated numbers of unique replicons, showing the receptivity of this lineage to plasmid acquisition. Findings from integrated genomic-epidemiologic analyses were leveraged to direct targeted clinical actions to improve rapid diagnosis and patient care and for public health efforts to further reduce spread. Multidrug-resistant isolates with resistance to macrolides are an emerging public health threat. We define a plasmid/pathogen complex behind infections seen in the United States and globally in vulnerable patient populations and identify multiple outbreaks in the United States and evidence of intercontinental transmission. Using new tools and sequence information, we experimentally identify the drivers of antibiotic resistance that complicate patient treatment to facilitate improvements to clinical microbiologic testing for their detection. We illustrate the use of these methods to support multiagency efforts to combat multidrug-resistant using publicly available tools, existing genomic data, and resources in clinical microbiology and public health laboratories to inform credible actions to reduce spread.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/mBio.03188-20DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7858064PMC
January 2021

NCBI's Virus Discovery Codeathon: Building "FIVE" -The Federated Index of Viral Experiments API Index.

Viruses 2020 12 10;12(12). Epub 2020 Dec 10.

National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20894, USA.

Viruses represent important test cases for data federation due to their genome size and the rapid increase in sequence data in publicly available databases. However, some consequences of previously decentralized (unfederated) data are lack of consensus or comparisons between feature annotations. Unifying or displaying alternative annotations should be a priority both for communities with robust entry representation and for nascent communities with burgeoning data sources. To this end, during this three-day continuation of the Virus Hunting Toolkit codeathon series (VHT-2), a new integrated and federated viral index was elaborated. This Federated Index of Viral Experiments (FIVE) integrates pre-existing and novel functional and taxonomy annotations and virus-host pairings. Variability in the context of viral genomic diversity is often overlooked in virus databases. As a proof-of-concept, FIVE was the first attempt to include viral genome variation for HIV, the most well-studied human pathogen, through viral genome diversity graphs. As per the publication of this manuscript, FIVE is the first implementation of a virus-specific federated index of such scope. FIVE is coded in BigQuery for optimal access of large quantities of data and is publicly accessible. Many projects of database or index federation fail to provide easier alternatives to access or query information. To this end, a Python API query system was developed to enhance the accessibility of FIVE.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/v12121424DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7764237PMC
December 2020

Current progress and future opportunities in applications of bioinformatics for biodefense and pathogen detection: report from the Winter Mid-Atlantic Microbiome Meet-up, College Park, MD, January 10, 2018.

Microbiome 2018 11 5;6(1):197. Epub 2018 Nov 5.

Center for Bioinformatics and Computational Biology, University of Maryland, College Park, College Park, MD, USA.

The Mid-Atlantic Microbiome Meet-up (M) organization brings together academic, government, and industry groups to share ideas and develop best practices for microbiome research. In January of 2018, M held its fourth meeting, which focused on recent advances in biodefense, specifically those relating to infectious disease, and the use of metagenomic methods for pathogen detection. Presentations highlighted the utility of next-generation sequencing technologies for identifying and tracking microbial community members across space and time. However, they also stressed the current limitations of genomic approaches for biodefense, including insufficient sensitivity to detect low-abundance pathogens and the inability to quantify viable organisms. Participants discussed ways in which the community can improve software usability and shared new computational tools for metagenomic processing, assembly, annotation, and visualization. Looking to the future, they identified the need for better bioinformatics toolkits for longitudinal analyses, improved sample processing approaches for characterizing viruses and fungi, and more consistent maintenance of database resources. Finally, they addressed the necessity of improving data standards to incentivize data sharing. Here, we summarize the presentations and discussions from the meeting, identifying the areas where microbiome analyses have improved our ability to detect and manage biological threats and infectious disease, as well as gaps of knowledge in the field that require future funding and focus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s40168-018-0582-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6219074PMC
November 2018