Publications by authors named "Kevin B White"

5 Publications

  • Page 1 of 1

Application of land use regression modelling to describe atmospheric levels of semivolatile organic compounds on a national scale.

Sci Total Environ 2021 Nov 19;793:148520. Epub 2021 Jun 19.

RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czechia.

Despite the success of passive sampler-based monitoring networks in capturing global atmospheric distributions of semivolatile organic compounds (SVOCs), their limited spatial resolution remains a challenge. Adequate spatial coverage is necessary to better characterize concentration gradients, identify point sources, estimate human exposure, and evaluate the effectiveness of chemical regulations such as the Stockholm Convention on Persistent Organic Pollutants. Land use regression (LUR) modelling can be used to integrate land use characteristics and other predictor variables (industrial emissions, traffic intensity, demographics, etc.) to describe or predict the distribution of air concentrations at unmeasured locations across a region or country. While LUR models are frequently applied to data-rich conventional air pollutants such as particulate matter, ozone, and nitrogen oxides, they are rarely applied to SVOCs. The MONET passive air sampling network (RECETOX, Masaryk University) continuously measures atmospheric SVOC levels across Czechia in monthly intervals. Using monitoring data from 29 MONET sites over a two-year period (2015-2017) and a variety of predictor variables, we developed LUR models to describe atmospheric levels and identify sources of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and DDT across the country. Strong and statistically significant (R > 0.6; p < 0.05) models were derived for PAH and PCB levels on a national scale. The PAH model retained three predictor variables - heating emissions represented by domestic fuel consumption, industrial PAH point sources, and the hill:valley index, a measure of site topography. The PCB model retained two predictor variables - site elevation, and secondary sources of PCBs represented by soil concentrations. These models were then applied to Czechia as a whole, highlighting the spatial variability of atmospheric SVOC levels, and providing a tool that can be used for further optimization of sampling network design, as well as evaluating potential human and environmental chemical exposures.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.148520DOI Listing
November 2021

Temporal Trends of Persistent Organic Pollutants across Africa after a Decade of MONET Passive Air Sampling.

Environ Sci Technol 2021 07 23;55(14):9413-9424. Epub 2020 Oct 23.

RECETOX, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic.

The Global Monitoring Plan of the Stockholm Convention on Persistent Organic Pollutants (POPs) was established to generate long-term data necessary for evaluating the effectiveness of regulatory measures at a global scale. After a decade of passive air monitoring (2008-2019), MONET is the first network to produce sufficient data for the analysis of long-term temporal trends of POPs in the African atmosphere. This study reports concentrations of 20 POPs (aldrin, chlordane, chlordecone, DDT, dieldrin, endrin, endosulfan, HBCDD, HCB, HCHs, heptachlor, hexabromobiphenyl, mirex, PBDEs, PCBs, PCDDs, PCDFs, PeCB, PFOA, and PFOS) monitored in 9 countries (Congo, Ghana, Ethiopia, Kenya, Mali, Mauritius, Morocco, Nigeria, and Sudan). As of January 1, 2019, concentrations were in the following ranges (pg/m): 0.5-37.7 (∑PCB), 0.006-0.724 (∑PCDD/F), 0.05-5.5 (∑PBDE), 0.6-11.3 (BDE 209), 0.1-1.8 (∑HBCDD), 1.8-138 (∑DDT), 0.1-24.3 (∑endosulfan), 0.6-14.6 (∑HCH), 9.1-26.4 (HCB), 13.8-18.2 (PeCB). Temporal trends indicate that concentrations of many POPs (PCBs, DDT, HCHs, endosulfan) have declined significantly over the past 10 years, though the rate was slow at some sites. Concentrations of other POPs such as PCDD/Fs and PBDEs have not changed significantly over the past decade and are in fact increasing at some sites, attributed to the prevalence of open burning of waste (particularly e-waste) across Africa. Modeled airflow back-trajectories suggest that the elevated concentrations at some sites are primarily due to sustained local emissions, while the low concentrations measured at Mt. Kenya represent the continental background level and are primarily influenced by long-range transport.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.0c03575DOI Listing
July 2021

Chronic Toxicity of Surface Water from a Canadian Oil Sands End Pit Lake to the Freshwater Invertebrates Chironomus dilutus and Ceriodaphnia dubia.

Arch Environ Contam Toxicol 2020 Apr 20;78(3):439-450. Epub 2020 Feb 20.

Toxicology Centre, University of Saskatchewan, 44 Campus Dr., Saskatoon, SK, S7N 5B3, Canada.

Permanent reclamation of tailings generated by surface mining in the Canadian oil sands may be achieved through the creation of end pit lakes (EPLs) in which tailings are stored in mined-out pits and capped with water. However, these tailings contain high concentrations of dissolved organics, metals, and salts, and thus surface water quality of EPLs is a significant concern. This is the first study to investigate the chronic toxicity of surface water from Base Mine Lake (BML), the Canadian oil sands first large-scale EPL, to aquatic invertebrates that play a vital role in the early development of aquatic ecosystems (Chironomus dilutus and Ceriodaphnia dubia). After exposure of C. dilutus larvae for 23 days and C. dubia neonates for 8 days, no mortality was observed in any treatment with whole BML surface water. However, the emergence of C. dilutus adults was delayed by nearly 1 week, and their survival was significantly reduced (36%) compared with the controls. Reproduction (fecundity) of C. dubia was reduced by 20% after exposure to 2014 BML surface water; however, the effect was not observed after exposure to BML surface water collected a year later in 2015. Despite some adverse effects, the results of this study indicate that BML surface water quality is improving over time and is able to support certain salt-tolerant aquatic organisms. Because salinity within BML will persist for decades without manual intervention, the ecological development of the lake will likely resemble that of a brackish or estuarine ecosystem with reduced diversity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00244-020-00720-3DOI Listing
April 2020

Comparability of long-term temporal trends of POPs from co-located active and passive air monitoring networks in Europe.

Environ Sci Process Impacts 2019 Jul;21(7):1132-1142

RECETOX Centre, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic.

The comparability of data from active (ACT) and passive sampling (PAS) of persistent organic pollutants (POPs) in air is hindered by uncertainties related to the derivation of sampling rates and concentrations, as well as differences in the duration, volume and frequency of sampling. Although data from ACT have been used extensively in short-term PAS calibration studies, no attempts have been made to evaluate the comparability of long-term trends calculated from PAS to established ACT trends. This is crucial, as continuous long-term ACT is unfeasible in most regions of the world. To address these challenges, we calculated and compared trends for organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) at the six sites in Europe with at least 5 years of co-located ACT and PAS data (2012-2016): Birkenes, Košetice, Pallas, Råö, Stórhöfði and Zeppelin. Strong agreement of ACT and PAS trends was observed for most OCPs and PCBs. Apart from two PCBs at Stórhöfði, all pairs of ACT and PAS trends followed the same direction. However, differences in the magnitude, significance and confidence intervals of their slopes were observed for some compounds and were primarily attributed to the short duration of the PAS time series. Despite some limitations, our results suggest that the comparability of ACT and PAS POP trends will continue to improve with additional years of data. This study confirms the suitability of PAS for the calculation of long-term POP trends in air, and highlights the importance of continuous sampling at established monitoring sites with consistent analytical methods.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9em00136kDOI Listing
July 2019

Early chemical and toxicological risk characterization of inorganic constituents in surface water from the Canadian oil sands first large-scale end pit lake.

Chemosphere 2018 Nov 19;211:745-757. Epub 2018 Jul 19.

Toxicology Centre, University of Saskatchewan, 44 Campus Dr., Saskatoon, SK, S7N 5B3, Canada; School of Environment and Sustainability, University of Saskatchewan, 117 Science Place, Saskatoon, SK, S7N 5C8, Canada. Electronic address:

End pit lakes (EPLs) have been proposed as a method for the long-term reclamation of process water and fluid fine tailings (FFT) produced from surface mining within the Canadian oil sands. These waste products contain elevated concentrations of dissolved organics, metals, and salts which reduce surface water quality and are toxic to aquatic organisms. This study measured the concentrations of inorganic constituents in surface water from the industry's first large-scale EPL over the course of a three-year period (2014-2016). The toxicological risk was subsequently assessed to identify constituents of concern that may impair surface water quality necessary for the development of a functional aquatic ecosystem or for release to the surrounding environment. Changes in surface water concentrations over the three-year period were strongly correlated with hydrological processes occurring within the lake: advective-diffusive chemical influx from FFT pore water to the overlying surface water was offset by efflux via continuous manual pumping (freshwater in, process water out). These processes resulted in a net dilution effect of approximately 5-10% per year, however, a significant chemical mass is expected to persist within the underlying FFT. Elevated salinity (as Na, Cl, HCO) and concentrations of boron and nickel were predicted to pose very high toxicological risk to aquatic organisms. Despite these risks, the discovery of wild Daphnia pulex in the August 2016 sample suggested that surface water quality was sufficient to support populations of certain salt-tolerant zooplankton and primary producers. However, the time required for development into a robust aquatic ecosystem remains unknown.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2018.07.059DOI Listing
November 2018
-->