Publications by authors named "Kerri L Wiggins"

67 Publications

The genomics of heart failure: design and rationale of the HERMES consortium.

ESC Heart Fail 2021 Sep 3. Epub 2021 Sep 3.

Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.

Aims: The HERMES (HEart failure Molecular Epidemiology for Therapeutic targetS) consortium aims to identify the genomic and molecular basis of heart failure.

Methods And Results: The consortium currently includes 51 studies from 11 countries, including 68 157 heart failure cases and 949 888 controls, with data on heart failure events and prognosis. All studies collected biological samples and performed genome-wide genotyping of common genetic variants. The enrolment of subjects into participating studies ranged from 1948 to the present day, and the median follow-up following heart failure diagnosis ranged from 2 to 116 months. Forty-nine of 51 individual studies enrolled participants of both sexes; in these studies, participants with heart failure were predominantly male (34-90%). The mean age at diagnosis or ascertainment across all studies ranged from 54 to 84 years. Based on the aggregate sample, we estimated 80% power to genetic variant associations with risk of heart failure with an odds ratio of ≥1.10 for common variants (allele frequency ≥ 0.05) and ≥1.20 for low-frequency variants (allele frequency 0.01-0.05) at P < 5 × 10 under an additive genetic model.

Conclusions: HERMES is a global collaboration aiming to (i) identify the genetic determinants of heart failure; (ii) generate insights into the causal pathways leading to heart failure and enable genetic approaches to target prioritization; and (iii) develop genomic tools for disease stratification and risk prediction.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ehf2.13517DOI Listing
September 2021

Rare Coding Variants Associated With Electrocardiographic Intervals Identify Monogenic Arrhythmia Susceptibility Genes: A Multi-Ancestry Analysis.

Circ Genom Precis Med 2021 Aug 28;14(4):e003300. Epub 2021 Jul 28.

Regeneron Genetics Center, Tarrytown, NY. Departments of Medicine, Brigham and Women's Hospital, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (S.R.).

Background: Alterations in electrocardiographic (ECG) intervals are well-known markers for arrhythmia and sudden cardiac death (SCD) risk. While the genetics of arrhythmia syndromes have been studied, relations between electrocardiographic intervals and rare genetic variation at a population level are poorly understood.

Methods: Using a discovery sample of 29 000 individuals with whole-genome sequencing from Trans-Omics in Precision Medicine and replication in nearly 100 000 with whole-exome sequencing from the UK Biobank and MyCode, we examined associations between low-frequency and rare coding variants with 5 routinely measured electrocardiographic traits (RR, P-wave, PR, and QRS intervals and corrected QT interval).

Results: We found that rare variants associated with population-based electrocardiographic intervals identify established monogenic SCD genes (, , and ), a controversial monogenic SCD gene (), and novel genes ( and ) involved in cardiac conduction. Loss-of-function and pathogenic variants, carried by 0.1% of individuals, were associated with a nearly 6-fold increased odds of the first-degree atrioventricular block (=8.4×10). Similar variants in and (0.2% of individuals) were associated with a 23-fold increased odds of marked corrected QT interval prolongation (=4×10), a marker of SCD risk. Incomplete penetrance of such deleterious variation was common as over 70% of carriers had normal electrocardiographic intervals.

Conclusions: Our findings indicate that large-scale high-depth sequence data and electrocardiographic analysis identifies monogenic arrhythmia susceptibility genes and rare variants with large effects. Known pathogenic variation in conventional arrhythmia and SCD genes exhibited incomplete penetrance and accounted for only a small fraction of marked electrocardiographic interval prolongation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCGEN.120.003300DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8373440PMC
August 2021

Epigenome-wide association meta-analysis of DNA methylation with coffee and tea consumption.

Nat Commun 2021 05 14;12(1):2830. Epub 2021 May 14.

Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands.

Coffee and tea are extensively consumed beverages worldwide which have received considerable attention regarding health. Intake of these beverages is consistently linked to, among others, reduced risk of diabetes and liver diseases; however, the mechanisms of action remain elusive. Epigenetics is suggested as a mechanism mediating the effects of dietary and lifestyle factors on disease onset. Here we report the results from epigenome-wide association studies (EWAS) on coffee and tea consumption in 15,789 participants of European and African-American ancestries from 15 cohorts. EWAS meta-analysis of coffee consumption reveals 11 CpGs surpassing the epigenome-wide significance threshold (P-value <1.1×10), which annotated to the AHRR, F2RL3, FLJ43663, HDAC4, GFI1 and PHGDH genes. Among them, cg14476101 is significantly associated with expression of the PHGDH and risk of fatty liver disease. Knockdown of PHGDH expression in liver cells shows a correlation with expression levels of genes associated with circulating lipids, suggesting a role of PHGDH in hepatic-lipid metabolism. EWAS meta-analysis on tea consumption reveals no significant association, only two CpGs annotated to CACNA1A and PRDM16 genes show suggestive association (P-value <5.0×10). These findings indicate that coffee-associated changes in DNA methylation levels may explain the mechanism of action of coffee consumption in conferring risk of diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-021-22752-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8121846PMC
May 2021

A System for Phenotype Harmonization in the National Heart, Lung, and Blood Institute Trans-Omics for Precision Medicine (TOPMed) Program.

Am J Epidemiol 2021 10;190(10):1977-1992

Genotype-phenotype association studies often combine phenotype data from multiple studies to increase statistical power. Harmonization of the data usually requires substantial effort due to heterogeneity in phenotype definitions, study design, data collection procedures, and data-set organization. Here we describe a centralized system for phenotype harmonization that includes input from phenotype domain and study experts, quality control, documentation, reproducible results, and data-sharing mechanisms. This system was developed for the National Heart, Lung, and Blood Institute's Trans-Omics for Precision Medicine (TOPMed) program, which is generating genomic and other -omics data for more than 80 studies with extensive phenotype data. To date, 63 phenotypes have been harmonized across thousands of participants (recruited in 1948-2012) from up to 17 studies per phenotype. Here we discuss challenges in this undertaking and how they were addressed. The harmonized phenotype data and associated documentation have been submitted to National Institutes of Health data repositories for controlled access by the scientific community. We also provide materials to facilitate future harmonization efforts by the community, which include 1) the software code used to generate the 63 harmonized phenotypes, enabling others to reproduce, modify, or extend these harmonizations to additional studies, and 2) the results of labeling thousands of phenotype variables with controlled vocabulary terms.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/aje/kwab115DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8485147PMC
October 2021

Association between ABO haplotypes and the risk of venous thrombosis: impact on disease risk estimation.

Blood 2021 Apr;137(17):2394-2402

Aix Marseille University, INSERM, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Centre de Recherche en CardioVasculaire et Nutrition, Marseille, France.

Genetic risk score (GRS) analysis is a popular approach to derive individual risk prediction models for complex diseases. In venous thrombosis (VT), such type of analysis shall integrate information at the ABO blood group locus, which is one of the major susceptibility loci. However, there is no consensus about which single nucleotide polymorphisms (SNPs) must be investigated when properly assessing association between ABO locus and VT risk. Using comprehensive haplotype analyses of ABO blood group tagging SNPs in 5425 cases and 8445 controls from 6 studies, we demonstrate that using only rs8176719 (tagging O1) to correctly assess the impact of ABO locus on VT risk is suboptimal, because 5% of rs8176719-delG carriers do not have an increased risk of developing VT. Instead, we recommend the use of 4 SNPs, rs2519093 (tagging A1), rs1053878 (A2), rs8176743 (B), and rs41302905 (O2), when assessing the impact of ABO locus on VT risk to avoid any risk misestimation. Compared with the O1 haplotype, the A2 haplotype is associated with a modest increase in VT risk (odds ratio, ∼1.2), the A1 and B haplotypes are associated with an ∼1.8-fold increased risk, whereas the O2 haplotype tends to be slightly protective (odds ratio, ∼0.80). In addition, although the A1 and B blood groups are associated with increased von Willebrand factor and factor VIII plasma levels, only the A1 blood group is associated with ICAM levels, but in an opposite direction, leaving additional avenues to be explored to fully understand the spectrum of biological effects mediated by ABO locus on cardiovascular traits.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood.2020008997DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8085481PMC
April 2021

Opioid, gabapentinoid, and nonsteroidal anti-inflammatory medication use and the risks of atrial fibrillation and supraventricular ectopy in the Multi-Ethnic Study of Atherosclerosis.

Pharmacoepidemiol Drug Saf 2020 09 17;29(9):1175-1182. Epub 2020 Jun 17.

Cardiovascular Health Research Unit and Department of Medicine, University of Washington, Seattle, Washington, USA.

Purpose: Opioids, gabapentinoids, and nonsteroidal anti-inflammatory drugs (NSAIDs) may have adverse cardiovascular effects. We evaluated whether these medications were associated with incident clinically detected atrial fibrillation (AF) or monitor-detected supraventricular ectopy (SVE), including premature atrial contractions (PACs) and supraventricular tachycardia (SVT).

Methods: We used data from the Multi-Ethnic Study of Atherosclerosis (MESA), a cohort study that enrolled 6814 Americans without clinically detected cardiovascular disease in 2000 to 2002. At the 2016 to 2018 examination, 1557 individuals received ambulatory electrocardiographic (ECG) monitoring. Longitudinal analyses investigated time-varying medication exposures at the first five exams (through 2011) in relation to incident clinically detected AF through 2015 using Cox proportional hazards regression models. Cross-sectional analyses investigated medication exposures at 2016 to 2018 examination and the risk of monitor-detected SVE using linear regression models.

Results: The longitudinal cohort included 6652 participants. During 12.4 years of mean follow-up, 982 participants (14.7%) experienced incident clinically detected AF. Use of opioids, gabapentinoids, and NSAIDs were not associated with incident AF. The cross-sectional analysis included 1435 participants with ECG monitoring. Gabapentinoid use was associated with an 84% greater average frequency of PACs/hour (95% CI, 25%-171%) and a 44% greater average number of runs of SVT/day (95% CI, 3%-100%). No associations were found with use of opioids or NSAIDs in cross-sectional analyses.

Conclusions: In this study, gabapentinoid use was associated with SVE. Given the rapid increase in gabapentinoid use, additional studies are needed to clarify whether these medications cause cardiovascular complications.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/pds.5036DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7933496PMC
September 2020

Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure.

Nat Commun 2020 01 9;11(1):163. Epub 2020 Jan 9.

Department of Biostatistics, University of Liverpool, Liverpool, UK.

Heart failure (HF) is a leading cause of morbidity and mortality worldwide. A small proportion of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide association studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely unexplained. We report results from a GWAS meta-analysis of HF comprising 47,309 cases and 930,014 controls. Twelve independent variants at 11 genomic loci are associated with HF, all of which demonstrate one or more associations with coronary artery disease (CAD), atrial fibrillation, or reduced left ventricular function, suggesting shared genetic aetiology. Functional analysis of non-CAD-associated loci implicate genes involved in cardiac development (MYOZ1, SYNPO2L), protein homoeostasis (BAG3), and cellular senescence (CDKN1A). Mendelian randomisation analysis supports causal roles for several HF risk factors, and demonstrates CAD-independent effects for atrial fibrillation, body mass index, and hypertension. These findings extend our knowledge of the pathways underlying HF and may inform new therapeutic strategies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-019-13690-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6952380PMC
January 2020

Use of >100,000 NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium whole genome sequences improves imputation quality and detection of rare variant associations in admixed African and Hispanic/Latino populations.

PLoS Genet 2019 12 23;15(12):e1008500. Epub 2019 Dec 23.

Genomics Platform, Broad Institute, Cambridge, Massachusetts, United States of America.

Most genome-wide association and fine-mapping studies to date have been conducted in individuals of European descent, and genetic studies of populations of Hispanic/Latino and African ancestry are limited. In addition, these populations have more complex linkage disequilibrium structure. In order to better define the genetic architecture of these understudied populations, we leveraged >100,000 phased sequences available from deep-coverage whole genome sequencing through the multi-ethnic NHLBI Trans-Omics for Precision Medicine (TOPMed) program to impute genotypes into admixed African and Hispanic/Latino samples with genome-wide genotyping array data. We demonstrated that using TOPMed sequencing data as the imputation reference panel improves genotype imputation quality in these populations, which subsequently enhanced gene-mapping power for complex traits. For rare variants with minor allele frequency (MAF) < 0.5%, we observed a 2.3- to 6.1-fold increase in the number of well-imputed variants, with 11-34% improvement in average imputation quality, compared to the state-of-the-art 1000 Genomes Project Phase 3 and Haplotype Reference Consortium reference panels. Impressively, even for extremely rare variants with minor allele count <10 (including singletons) in the imputation target samples, average information content rescued was >86%. Subsequent association analyses of TOPMed reference panel-imputed genotype data with hematological traits (hemoglobin (HGB), hematocrit (HCT), and white blood cell count (WBC)) in ~21,600 African-ancestry and ~21,700 Hispanic/Latino individuals identified associations with two rare variants in the HBB gene (rs33930165 with higher WBC [p = 8.8x10-15] in African populations, rs11549407 with lower HGB [p = 1.5x10-12] and HCT [p = 8.8x10-10] in Hispanics/Latinos). By comparison, neither variant would have been genome-wide significant if either 1000 Genomes Project Phase 3 or Haplotype Reference Consortium reference panels had been used for imputation. Our findings highlight the utility of the TOPMed imputation reference panel for identification of novel rare variant associations not previously detected in similarly sized genome-wide studies of under-represented African and Hispanic/Latino populations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pgen.1008500DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6953885PMC
December 2019

Genome-Wide Association Study of Apparent Treatment-Resistant Hypertension in the CHARGE Consortium: The CHARGE Pharmacogenetics Working Group.

Am J Hypertens 2019 11;32(12):1146-1153

Robertson Center for Biostatistics, University of Glasgow, Glasgow, UK.

Background: Only a handful of genetic discovery efforts in apparent treatment-resistant hypertension (aTRH) have been described.

Methods: We conducted a case-control genome-wide association study of aTRH among persons treated for hypertension, using data from 10 cohorts of European ancestry (EA) and 5 cohorts of African ancestry (AA). Cases were treated with 3 different antihypertensive medication classes and had blood pressure (BP) above goal (systolic BP ≥ 140 mm Hg and/or diastolic BP ≥ 90 mm Hg) or 4 or more medication classes regardless of BP control (nEA = 931, nAA = 228). Both a normotensive control group and a treatment-responsive control group were considered in separate analyses. Normotensive controls were untreated (nEA = 14,210, nAA = 2,480) and had systolic BP/diastolic BP < 140/90 mm Hg. Treatment-responsive controls (nEA = 5,266, nAA = 1,817) had BP at goal (<140/90 mm Hg), while treated with one antihypertensive medication class. Individual cohorts used logistic regression with adjustment for age, sex, study site, and principal components for ancestry to examine the association of single-nucleotide polymorphisms with case-control status. Inverse variance-weighted fixed-effects meta-analyses were carried out using METAL.

Results: The known hypertension locus, CASZ1, was a top finding among EAs (P = 1.1 × 10-8) and in the race-combined analysis (P = 1.5 × 10-9) using the normotensive control group (rs12046278, odds ratio = 0.71 (95% confidence interval: 0.6-0.8)). Single-nucleotide polymorphisms in this locus were robustly replicated in the Million Veterans Program (MVP) study in consideration of a treatment-responsive control group. There were no statistically significant findings for the discovery analyses including treatment-responsive controls.

Conclusion: This genomic discovery effort for aTRH identified CASZ1 as an aTRH risk locus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/ajh/hpz150DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6856621PMC
November 2019

Blood Leukocyte DNA Methylation Predicts Risk of Future Myocardial Infarction and Coronary Heart Disease.

Circulation 2019 08 19;140(8):645-657. Epub 2019 Aug 19.

Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle (J.A.B., J.S.F., K.L.W.).

Background: DNA methylation is implicated in coronary heart disease (CHD), but current evidence is based on small, cross-sectional studies. We examined blood DNA methylation in relation to incident CHD across multiple prospective cohorts.

Methods: Nine population-based cohorts from the United States and Europe profiled epigenome-wide blood leukocyte DNA methylation using the Illumina Infinium 450k microarray, and prospectively ascertained CHD events including coronary insufficiency/unstable angina, recognized myocardial infarction, coronary revascularization, and coronary death. Cohorts conducted race-specific analyses adjusted for age, sex, smoking, education, body mass index, blood cell type proportions, and technical variables. We conducted fixed-effect meta-analyses across cohorts.

Results: Among 11 461 individuals (mean age 64 years, 67% women, 35% African American) free of CHD at baseline, 1895 developed CHD during a mean follow-up of 11.2 years. Methylation levels at 52 CpG (cytosine-phosphate-guanine) sites were associated with incident CHD or myocardial infarction (false discovery rate<0.05). These CpGs map to genes with key roles in calcium regulation (ATP2B2, CASR, GUCA1B, HPCAL1), and genes identified in genome- and epigenome-wide studies of serum calcium (CASR), serum calcium-related risk of CHD (CASR), coronary artery calcified plaque (PTPRN2), and kidney function (CDH23, HPCAL1), among others. Mendelian randomization analyses supported a causal effect of DNA methylation on incident CHD; these CpGs map to active regulatory regions proximal to long non-coding RNA transcripts.

Conclusion: Methylation of blood-derived DNA is associated with risk of future CHD across diverse populations and may serve as an informative tool for gaining further insight on the development of CHD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCULATIONAHA.118.039357DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6812683PMC
August 2019

Genomic and transcriptomic association studies identify 16 novel susceptibility loci for venous thromboembolism.

Blood 2019 11;134(19):1645-1657

Boston VA Healthcare System, Boston, MA.

Venous thromboembolism (VTE) is a significant contributor to morbidity and mortality. To advance our understanding of the biology contributing to VTE, we conducted a genome-wide association study (GWAS) of VTE and a transcriptome-wide association study (TWAS) based on imputed gene expression from whole blood and liver. We meta-analyzed GWAS data from 18 studies for 30 234 VTE cases and 172 122 controls and assessed the association between 12 923 718 genetic variants and VTE. We generated variant prediction scores of gene expression from whole blood and liver tissue and assessed them for association with VTE. Mendelian randomization analyses were conducted for traits genetically associated with novel VTE loci. We identified 34 independent genetic signals for VTE risk from GWAS meta-analysis, of which 14 are newly reported associations. This included 11 newly associated genetic loci (C1orf198, PLEK, OSMR-AS1, NUGGC/SCARA5, GRK5, MPHOSPH9, ARID4A, PLCG2, SMG6, EIF5A, and STX10) of which 6 replicated, and 3 new independent signals in 3 known genes. Further, TWAS identified 5 additional genetic loci with imputed gene expression levels differing between cases and controls in whole blood (SH2B3, SPSB1, RP11-747H7.3, RP4-737E23.2) and in liver (ERAP1). At some GWAS loci, we found suggestive evidence that the VTE association signal for novel and previously known regions colocalized with expression quantitative trait locus signals. Mendelian randomization analyses suggested that blood traits may contribute to the underlying risk of VTE. To conclude, we identified 16 novel susceptibility loci for VTE; for some loci, the association signals are likely mediated through gene expression of nearby genes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood.2019000435DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6871304PMC
November 2019

Genome-wide meta-analysis of SNP and antihypertensive medication interactions on left ventricular traits in African Americans.

Mol Genet Genomic Med 2019 10 13;7(10):e00788. Epub 2019 Aug 13.

Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, USA.

Background: Left ventricular (LV) hypertrophy affects up to 43% of African Americans (AAs). Antihypertensive treatment reduces LV mass (LVM). However, interindividual variation in LV traits in response to antihypertensive treatments exists. We hypothesized that genetic variants may modify the association of antihypertensive treatment class with LV traits measured by echocardiography.

Methods: We evaluated the main effects of the three most common antihypertensive treatments for AAs as well as the single nucleotide polymorphism (SNP)-by-drug interaction on LVM and relative wall thickness (RWT) in 2,068 participants across five community-based cohorts. Treatments included thiazide diuretics (TDs), angiotensin converting enzyme inhibitors (ACE-Is), and dihydropyridine calcium channel blockers (dCCBs) and were compared in a pairwise manner. We performed fixed effects inverse variance weighted meta-analyses of main effects of drugs and 2.5 million SNP-by-drug interaction estimates.

Results: We observed that dCCBs versus TDs were associated with higher LVM after adjusting for covariates (p = 0.001). We report three SNPs at a single locus on chromosome 20 that modified the association between RWT and treatment when comparing dCCBs to ACE-Is with consistent effects across cohorts (smallest p = 4.7 × 10 , minor allele frequency range 0.09-0.12). This locus has been linked to LV hypertrophy in a previous study. A marginally significant locus in BICD1 (rs326641) was validated in an external population.

Conclusions: Our study identified one locus having genome-wide significant SNP-by-drug interaction effect on RWT among dCCB users in comparison to ACE-I users. Upon additional validation in future studies, our findings can enhance the precision of medical approaches in hypertension treatment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/mgg3.788DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6785453PMC
October 2019

Pharmacogenomics of statin-related myopathy: Meta-analysis of rare variants from whole-exome sequencing.

PLoS One 2019 26;14(6):e0218115. Epub 2019 Jun 26.

Clinical Lipidology and Rare Lipid Disorders Unit, Department of Medicine, Université de Montréal Community Gene Medicine Center, Lipid Clinic Chicoutimi Hospital and ECOGENE-21 Clinical and Translational Research Center, Chicoutimi, Quebec, Canada.

Aims: Statin-related myopathy (SRM), which includes rhabdomyolysis, is an uncommon but important adverse drug reaction because the number of people prescribed statins world-wide is large. Previous association studies of common genetic variants have had limited success in identifying a genetic basis for this adverse drug reaction. We conducted a multi-site whole-exome sequencing study to investigate whether rare coding variants confer an increased risk of SRM.

Methods And Results: SRM 3-5 cases (N = 505) and statin treatment-tolerant controls (N = 2047) were recruited from multiple sites in North America and Europe. SRM 3-5 was defined as symptoms consistent with muscle injury and an elevated creatine phosphokinase level >4 times upper limit of normal without another likely cause of muscle injury. Whole-exome sequencing and variant calling was coordinated from two analysis centres, and results of single-variant and gene-based burden tests were meta-analysed. No genome-wide significant associations were identified. Given the large number of cases, we had 80% power to identify a variant with minor allele frequency of 0.01 that increases the risk of SRM 6-fold at genome-wide significance.

Conclusions: In this large whole-exome sequencing study of severe statin-related muscle injury conducted to date, we did not find evidence that rare coding variants are responsible for this adverse drug reaction. Larger sample sizes would be required to identify rare variants with small effects, but it is unclear whether such findings would be clinically actionable.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0218115PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6594672PMC
February 2020

Mendelian randomization evaluation of causal effects of fibrinogen on incident coronary heart disease.

PLoS One 2019 10;14(5):e0216222. Epub 2019 May 10.

Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands.

Background: Fibrinogen is an essential hemostatic factor and cardiovascular disease risk factor. Early attempts at evaluating the causal effect of fibrinogen on coronary heart disease (CHD) and myocardial infraction (MI) using Mendelian randomization (MR) used single variant approaches, and did not take advantage of recent genome-wide association studies (GWAS) or multi-variant, pleiotropy robust MR methodologies.

Methods And Findings: We evaluated evidence for a causal effect of fibrinogen on both CHD and MI using MR. We used both an allele score approach and pleiotropy robust MR models. The allele score was composed of 38 fibrinogen-associated variants from recent GWAS. Initial analyses using the allele score used a meta-analysis of 11 European-ancestry prospective cohorts, free of CHD and MI at baseline, to examine incidence CHD and MI. We also applied 2 sample MR methods with data from a prevalent CHD and MI GWAS. Results are given in terms of the hazard ratio (HR) or odds ratio (OR), depending on the study design, and associated 95% confidence interval (CI). In single variant analyses no causal effect of fibrinogen on CHD or MI was observed. In multi-variant analyses using incidence CHD cases and the allele score approach, the estimated causal effect (HR) of a 1 g/L higher fibrinogen concentration was 1.62 (CI = 1.12, 2.36) when using incident cases and the allele score approach. In 2 sample MR analyses that accounted for pleiotropy, the causal estimate (OR) was reduced to 1.18 (CI = 0.98, 1.42) and 1.09 (CI = 0.89, 1.33) in the 2 most precise (smallest CI) models, out of 4 models evaluated. In the 2 sample MR analyses for MI, there was only very weak evidence of a causal effect in only 1 out of 4 models.

Conclusions: A small causal effect of fibrinogen on CHD is observed using multi-variant MR approaches which account for pleiotropy, but not single variant MR approaches. Taken together, results indicate that even with large sample sizes and multi-variant approaches MR analyses still cannot exclude the null when estimating the causal effect of fibrinogen on CHD, but that any potential causal effect is likely to be much smaller than observed in epidemiological studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0216222PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6510421PMC
January 2020

A large-scale exome array analysis of venous thromboembolism.

Genet Epidemiol 2019 06 19;43(4):449-457. Epub 2019 Jan 19.

Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington.

Although recent Genome-Wide Association Studies have identified novel associations for common variants, there has been no comprehensive exome-wide search for low-frequency variants that affect the risk of venous thromboembolism (VTE). We conducted a meta-analysis of 11 studies comprising 8,332 cases and 16,087 controls of European ancestry and 382 cases and 1,476 controls of African American ancestry genotyped with the Illumina HumanExome BeadChip. We used the seqMeta package in R to conduct single variant and gene-based rare variant tests. In the single variant analysis, we limited our analysis to the 64,794 variants with at least 40 minor alleles across studies (minor allele frequency [MAF] ~0.08%). We confirmed associations with previously identified VTE loci, including ABO, F5, F11, and FGA. After adjusting for multiple testing, we observed no novel significant findings in single variant or gene-based analysis. Given our sample size, we had greater than 80% power to detect minimum odds ratios greater than 1.5 and 1.8 for a single variant with MAF of 0.01 and 0.005, respectively. Larger studies and sequence data may be needed to identify novel low-frequency and rare variants associated with VTE risk.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/gepi.22187DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6520188PMC
June 2019

DNA methylation age is associated with an altered hemostatic profile in a multiethnic meta-analysis.

Blood 2018 10 24;132(17):1842-1850. Epub 2018 Jul 24.

Cardiovascular Health Research Unit, University of Washington, Seattle, WA.

Many hemostatic factors are associated with age and age-related diseases; however, much remains unknown about the biological mechanisms linking aging and hemostatic factors. DNA methylation is a novel means by which to assess epigenetic aging, which is a measure of age and the aging processes as determined by altered epigenetic states. We used a meta-analysis approach to examine the association between measures of epigenetic aging and hemostatic factors, as well as a clotting time measure. For fibrinogen, we performed European and African ancestry-specific meta-analyses which were then combined via a random effects meta-analysis. For all other measures we could not estimate ancestry-specific effects and used a single fixed effects meta-analysis. We found that 1-year higher extrinsic epigenetic age as compared with chronological age was associated with higher fibrinogen (0.004 g/L/y; 95% confidence interval, 0.001-0.007; = .01) and plasminogen activator inhibitor 1 (PAI-1; 0.13 U/mL/y; 95% confidence interval, 0.07-0.20; = 6.6 10) concentrations, as well as lower activated partial thromboplastin time, a measure of clotting time. We replicated PAI-1 associations using an independent cohort. To further elucidate potential functional mechanisms, we associated epigenetic aging with expression levels of the PAI-1 protein encoding gene () and the 3 fibrinogen subunit-encoding genes (, , and ) in both peripheral blood and aorta intima-media samples. We observed associations between accelerated epigenetic aging and transcription of in both tissues. Collectively, our results indicate that accelerated epigenetic aging is associated with a procoagulation hemostatic profile, and that epigenetic aging may regulate hemostasis in part via gene transcription.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood-2018-02-831347DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6202911PMC
October 2018

Atrial fibrillation in an African-American cohort: The Jackson Heart Study.

Clin Cardiol 2018 Aug 17;41(8):1049-1054. Epub 2018 Aug 17.

Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington.

Background: Atrial fibrillation (AF) is an important public health problem across race/ethnic groups. Data from US cohort studies initiated in the 1980s suggest a higher prevalence of AF risk factors among African-Americans (AAs) than whites, but lower AF incidence. The Jackson Heart Study (JHS) is a community-based study of 5306 AAs recruited starting in 2000.

Hypothesis: Demographic, anthropometric, cardiovascular, and/or electrocardiographic factors are associated with AF incidence in JHS.

Methods: Using baseline participant characteristics and incident AF identified through hospital surveillance, study electrocardiogram, and Medicare claims, we estimated age- and sex-specific AF incidence rates, compared them with rates in AA participants in the Multi-Ethnic Study of Atherosclerosis (MESA) and Cardiovascular Health Study (CHS), and examined associations of cardiovascular risk factors with AF.

Results: A total of 66 participants had prevalent AF at baseline. Over an average follow-up of 8.5 years, 242 cases of incident AF were identified. Age- and sex-specific AF incidence rates in JHS were similar to those among AAs in MESA and appeared slightly lower than those among AAs in CHS. In an age- and sex-adjusted model, associations with incident AF were observed for modifiable risk factors: high body weight (HR = 1.23 per 15 kg, 95%CI 1.13-1.35), systolic blood pressure (HR = 1.29 per 20 mmHg, 95%CI 1.13-1.47), and current smoking (HR = 1.80, 95%CI 1.27-2.55). Risk estimates associated with these risk factors were only slightly attenuated after multivariable adjustments.

Conclusions: These findings underscore the potential additional benefits of interventions for weight management, control of hypertension, and smoking cessation for the prevention of AF among AAs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/clc.23020DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6153048PMC
August 2018

Multi-ethnic genome-wide association study for atrial fibrillation.

Nat Genet 2018 06 11;50(9):1225-1233. Epub 2018 Jun 11.

Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Atrial fibrillation (AF) affects more than 33 million individuals worldwide and has a complex heritability. We conducted the largest meta-analysis of genome-wide association studies (GWAS) for AF to date, consisting of more than half a million individuals, including 65,446 with AF. In total, we identified 97 loci significantly associated with AF, including 67 that were novel in a combined-ancestry analysis, and 3 that were novel in a European-specific analysis. We sought to identify AF-associated genes at the GWAS loci by performing RNA-sequencing and expression quantitative trait locus analyses in 101 left atrial samples, the most relevant tissue for AF. We also performed transcriptome-wide analyses that identified 57 AF-associated genes, 42 of which overlap with GWAS loci. The identified loci implicate genes enriched within cardiac developmental, electrophysiological, contractile and structural pathways. These results extend our understanding of the biological pathways underlying AF and may facilitate the development of therapeutics for AF.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-018-0133-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6136836PMC
June 2018

Genome-wide meta-analysis of SNP-by9-ACEI/ARB and SNP-by-thiazide diuretic and effect on serum potassium in cohorts of European and African ancestry.

Pharmacogenomics J 2019 02 1;19(1):97-108. Epub 2018 Jun 1.

Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.

We evaluated interactions of SNP-by-ACE-I/ARB and SNP-by-TD on serum potassium (K+) among users of antihypertensive treatments (anti-HTN). Our study included seven European-ancestry (EA) (N = 4835) and four African-ancestry (AA) cohorts (N = 2016). We performed race-stratified, fixed-effect, inverse-variance-weighted meta-analyses of 2.5 million SNP-by-drug interaction estimates; race-combined meta-analysis; and trans-ethnic fine-mapping. Among EAs, we identified 11 significant SNPs (P < 5 × 10) for SNP-ACE-I/ARB interactions on serum K+ that were located between NR2F1-AS1 and ARRDC3-AS1 on chromosome 5 (top SNP rs6878413 P = 1.7 × 10; ratio of serum K+ in ACE-I/ARB exposed compared to unexposed is 1.0476, 1.0280, 1.0088 for the TT, AT, and AA genotypes, respectively). Trans-ethnic fine mapping identified the same group of SNPs on chromosome 5 as genome-wide significant for the ACE-I/ARB analysis. In conclusion, SNP-by-ACE-I /ARB interaction analyses uncovered loci that, if replicated, could have future implications for the prevention of arrhythmias due to anti-HTN treatment-related hyperkalemia. Before these loci can be identified as clinically relevant, future validation studies of equal or greater size in comparison to our discovery effort are needed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41397-018-0021-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6274589PMC
February 2019

Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes.

Nat Genet 2018 04 12;50(4):524-537. Epub 2018 Mar 12.

Institute of Cardiovascular Research, Royal Holloway University of London, London, UK, and Ashford and St Peters Hospital, Surrey, UK.

Stroke has multiple etiologies, but the underlying genes and pathways are largely unknown. We conducted a multiancestry genome-wide-association meta-analysis in 521,612 individuals (67,162 cases and 454,450 controls) and discovered 22 new stroke risk loci, bringing the total to 32. We further found shared genetic variation with related vascular traits, including blood pressure, cardiac traits, and venous thromboembolism, at individual loci (n = 18), and using genetic risk scores and linkage-disequilibrium-score regression. Several loci exhibited distinct association and pleiotropy patterns for etiological stroke subtypes. Eleven new susceptibility loci indicate mechanisms not previously implicated in stroke pathophysiology, with prioritization of risk variants and genes accomplished through bioinformatics analyses using extensive functional datasets. Stroke risk loci were significantly enriched in drug targets for antithrombotic therapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-018-0058-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5968830PMC
April 2018

Administrative billing codes accurately identified occurrence of electrical cardioversion and ablation/maze procedures in a prospective cohort study of atrial fibrillation patients.

Clin Cardiol 2017 Dec 6;40(12):1227-1230. Epub 2017 Dec 6.

Department of Health Science, Brigham Young University, Provo, Utah.

Background: Administrative billing codes for electrical cardioversion and ablation/maze procedures may be useful for atrial fibrillation (AF) research if the codes are accurate relative to medical record documentation.

Hypothesis: Administrative billing codes accurately identify occurrence of electrical cardioversion and ablation/maze procedures in AF patients.

Methods: We studied adults ages 30 to 84 who experienced new-onset AF between October 2001 and December 2004 in Group Health Cooperative (acquired by Kaiser Permanente in 2017), an integrated healthcare system in Washington state and northern Idaho. Using medical record review as the gold standard, we calculated sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for 3 administrative billing codes for electrical cardioversion and 3 codes for AF ablation/maze procedures.

Results: Of 1953 study participants, during a mean (SD) of 1.5 (0.7) years of follow-up after AF onset, 470 (24%) experienced electrical cardioversion and 44 (2%) experienced ablation/maze procedures, according to medical record review. For electrical cardioversion, individual codes had 7.7% to 76.4% sensitivity, >99% specificity, 83.7% to 96.5% PPV, and 77.3% to 93.0% NPV. Considering any of 3 codes (code 1 or code 2 or code 3) improved sensitivity to 84.9%. For ablation/maze, individual codes had 18.2% to 47.7% sensitivity, >99% specificity, 66.7% to 95.5% PPV, and >98% NPV. Considering any of 3 codes improved sensitivity to 84.1%.

Conclusions: Administrative billing data accurately identified electrical cardioversion and ablation/maze procedures and can be used instead of medical record review. Our findings apply to healthcare settings with available administrative billing databases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/clc.22812DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6086133PMC
December 2017

Loss-of-Function Variants, Low-Density Lipoprotein Cholesterol, and Risk of Coronary Heart Disease and Stroke: Data From 9 Studies of Blacks and Whites.

Circ Cardiovasc Genet 2017 Aug;10(4):e001632

For the author affiliations, please see the Appendix.

Background: loss-of-function (LOF) variants allow for the examination of the effects of lifetime reduced low-density lipoprotein cholesterol (LDL-C) on cardiovascular events. We examined the association of LOF variants with LDL-C and incident coronary heart disease and stroke through a meta-analysis of data from 8 observational cohorts and 1 randomized trial of statin therapy.

Methods And Results: These 9 studies together included 17 459 blacks with 403 (2.3%) having at least 1 Y142X or C679X variant and 31 306 whites with 955 (3.1%) having at least 1 R46L variant. Unadjusted odds ratios for associations between LOF variants and incident coronary heart disease (851 events in blacks and 2662 events in whites) and stroke (523 events in blacks and 1660 events in whites) were calculated using pooled Mantel-Haenszel estimates with continuity correction factors. Pooling results across studies using fixed-effects inverse-variance-weighted models, LOF variants were associated with 35 mg/dL (95% confidence interval [CI], 32-39) lower LDL-C in blacks and 13 mg/dL (95% CI, 11-16) lower LDL-C in whites. LOF variants were associated with a pooled odds ratio for coronary heart disease of 0.51 (95% CI, 0.28-0.92) in blacks and 0.82 (95% CI, 0.63-1.06) in whites. LOF variants were not associated with incident stroke (odds ratio, 0.84; 95% CI, 0.48-1.47 in blacks and odds ratio, 1.06; 95% CI, 0.80-1.41 in whites).

Conclusions: LOF variants were associated with lower LDL-C and coronary heart disease incidence. LOF variants were not associated with stroke risk.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCGENETICS.116.001632DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5729040PMC
August 2017

Single-trait and multi-trait genome-wide association analyses identify novel loci for blood pressure in African-ancestry populations.

PLoS Genet 2017 May 12;13(5):e1006728. Epub 2017 May 12.

Department of Preventive Medicine, University of Mississippi Medical Center, Jackson, Mississippi, United States of America.

Hypertension is a leading cause of global disease, mortality, and disability. While individuals of African descent suffer a disproportionate burden of hypertension and its complications, they have been underrepresented in genetic studies. To identify novel susceptibility loci for blood pressure and hypertension in people of African ancestry, we performed both single and multiple-trait genome-wide association analyses. We analyzed 21 genome-wide association studies comprised of 31,968 individuals of African ancestry, and validated our results with additional 54,395 individuals from multi-ethnic studies. These analyses identified nine loci with eleven independent variants which reached genome-wide significance (P < 1.25×10-8) for either systolic and diastolic blood pressure, hypertension, or for combined traits. Single-trait analyses identified two loci (TARID/TCF21 and LLPH/TMBIM4) and multiple-trait analyses identified one novel locus (FRMD3) for blood pressure. At these three loci, as well as at GRP20/CDH17, associated variants had alleles common only in African-ancestry populations. Functional annotation showed enrichment for genes expressed in immune and kidney cells, as well as in heart and vascular cells/tissues. Experiments driven by these findings and using angiotensin-II induced hypertension in mice showed altered kidney mRNA expression of six genes, suggesting their potential role in hypertension. Our study provides new evidence for genes related to hypertension susceptibility, and the need to study African-ancestry populations in order to identify biologic factors contributing to hypertension.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pgen.1006728DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5446189PMC
May 2017

Pericardial fat volume and incident atrial fibrillation in the Multi-Ethnic Study of Atherosclerosis and Jackson Heart Study.

Obesity (Silver Spring) 2017 06 28;25(6):1115-1121. Epub 2017 Apr 28.

Department of Pharmacy Administration, University of Mississippi, University, Mississippi, USA.

Objective: To determine whether greater pericardial fat volume would be associated with increased risk of incident atrial fibrillation (AF).

Methods: In the Multi-Ethnic Study of Atherosclerosis and Jackson Heart Study, pericardial fat volume was quantified by computed tomography. Incident AF was identified from discharge diagnosis codes, study electrocardiograms, and Medicare claims.

Results: Among 7,991 participants, 40% were African American, 32% white, 18% Hispanic, and 10% Chinese American; mean age was 62 years; 55% were women. During an average of 10.0 years of follow-up in the Multi-Ethnic Study of Atherosclerosis and 4.5 years in the Jackson Heart Study, 756 incident AF cases were identified. After adjustment for age, sex, study, race/ethnicity, height, glucose status, systolic blood pressure, treated hypertension, and BMI, greater pericardial fat volume was associated with higher AF risk in Hispanics (hazard ratio 1.24 per SD, 95% confidence interval 1.05-1.46) but not overall (hazard ratio 1.06, 95% confidence interval 0.97-1.15). In mediation analysis, pericardial fat volume partially mediated the association of BMI with incident AF in Hispanics.

Conclusions: After adjustment for BMI, greater pericardial fat volume was associated with incident AF in Hispanics but not overall. Additional research is needed on the mechanisms by which pericardial fat volume is related to increased AF risk and possible differences by race/ethnicity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/oby.21835DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5445011PMC
June 2017

The promoter polymorphism -860 A > G (rs3814159) is associated with increased gene transcription, protein expression, CD39/NTPDase1 enzymatic activity, and thromboembolism risk.

FASEB J 2017 07 16;31(7):2771-2784. Epub 2017 Mar 16.

Center for Cancer and Blood Disorders, University of Colorado at Denver, Aurora, Colorado, USA.

Ectonucleoside triphosphate diphosphohydrolase 1 (NTPDase1) degrades the purines ATP and ADP that are key regulators of inflammation and clotting. We hypothesized that NTPDase1 polymorphisms exist and that they regulate this pathway. We sequenced the gene (encoding NTPDase1) in 216 subjects then assessed genotypes in 2 cohorts comprising 2213 humans to identify polymorphisms associated with venous thromboembolism (VTE). The G allele of the intron 1 polymorphism rs3176891 was more common in VTE controls (odds ratio 1.26-1.9); it did not affect RNA splicing, but it was in strong linkage disequilibrium with the G allele of the promoter polymorphism rs3814159, which increased transcriptional activity by 8-fold. Oligonucleotides containing the G allele of this promoter region bound nuclear extracts more avidly. Carriers of rs3176891 G had endothelial cells with increased NTPDase1 activity and protein expression, and had platelets with enhanced aggregation. Thus, the G allele of rs3176891 marks a haplotype associated with increased clotting and platelet aggregation attributable to a promoter variant associated with increased transcription, expression, and activity of NTPDase1. We term this gain-of-function phenotype observed with rs3814159 G "CD39 Denver."-Maloney, J. P., Branchford, B. R., Brodsky, G. L., Cosmic, M. S., Calabrese, D. W., Aquilante, C. L., Maloney, K. W., Gonzalez, J. R., Zhang, W., Moreau, K. L., Wiggins, K. L., Smith, N. L., Broeckel, U., Di Paola, J. The promoter polymorphism -860 A > G (rs3814159) is associated with increased gene transcription, protein expression, CD39/NTPDase1 enzymatic activity, and thromboembolism risk.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.201600344RDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6137499PMC
July 2017

A genome-wide interaction analysis of tricyclic/tetracyclic antidepressants and RR and QT intervals: a pharmacogenomics study from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium.

J Med Genet 2017 05 30;54(5):313-323. Epub 2016 Dec 30.

Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, Bethesda, Maryland, USA.

Background: Increased heart rate and a prolonged QT interval are important risk factors for cardiovascular morbidity and mortality, and can be influenced by the use of various medications, including tricyclic/tetracyclic antidepressants (TCAs). We aim to identify genetic loci that modify the association between TCA use and RR and QT intervals.

Methods And Results: We conducted race/ethnic-specific genome-wide interaction analyses (with HapMap phase II imputed reference panel imputation) of TCAs and resting RR and QT intervals in cohorts of European (n=45 706; n=1417 TCA users), African (n=10 235; n=296 TCA users) and Hispanic/Latino (n=13 808; n=147 TCA users) ancestry, adjusted for clinical covariates. Among the populations of European ancestry, two genome-wide significant loci were identified for RR interval: rs6737205 in (β=56.3, p=3.9e) and rs9830388 in (β=25.2, p=1.7e). In Hispanic/Latino cohorts, rs2291477 in significantly modified the association between TCAs and QT intervals (β=9.3, p=2.55e). In the meta-analyses of the other ethnicities, these loci either were excluded from the meta-analyses (as part of quality control), or their effects did not reach the level of nominal statistical significance (p>0.05). No new variants were identified in these ethnicities. No additional loci were identified after inverse-variance-weighted meta-analysis of the three ancestries.

Conclusions: Among Europeans, TCA interactions with variants in and were identified in relation to RR intervals. Among Hispanic/Latinos, variants in modified the relation between TCAs and QT intervals. Future studies are required to confirm our results.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/jmedgenet-2016-104112DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5406254PMC
May 2017

DNA methylation signatures of chronic low-grade inflammation are associated with complex diseases.

Genome Biol 2016 12 12;17(1):255. Epub 2016 Dec 12.

Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA.

Background: Chronic low-grade inflammation reflects a subclinical immune response implicated in the pathogenesis of complex diseases. Identifying genetic loci where DNA methylation is associated with chronic low-grade inflammation may reveal novel pathways or therapeutic targets for inflammation.

Results: We performed a meta-analysis of epigenome-wide association studies (EWAS) of serum C-reactive protein (CRP), which is a sensitive marker of low-grade inflammation, in a large European population (n = 8863) and trans-ethnic replication in African Americans (n = 4111). We found differential methylation at 218 CpG sites to be associated with CRP (P < 1.15 × 10) in the discovery panel of European ancestry and replicated (P < 2.29 × 10) 58 CpG sites (45 unique loci) among African Americans. To further characterize the molecular and clinical relevance of the findings, we examined the association with gene expression, genetic sequence variants, and clinical outcomes. DNA methylation at nine (16%) CpG sites was associated with whole blood gene expression in cis (P < 8.47 × 10), ten (17%) CpG sites were associated with a nearby genetic variant (P < 2.50 × 10), and 51 (88%) were also associated with at least one related cardiometabolic entity (P < 9.58 × 10). An additive weighted score of replicated CpG sites accounted for up to 6% inter-individual variation (R2) of age-adjusted and sex-adjusted CRP, independent of known CRP-related genetic variants.

Conclusion: We have completed an EWAS of chronic low-grade inflammation and identified many novel genetic loci underlying inflammation that may serve as targets for the development of novel therapeutic interventions for inflammation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13059-016-1119-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5151130PMC
December 2016

Meta-analysis of genome-wide association studies of HDL cholesterol response to statins.

J Med Genet 2016 12 1;53(12):835-845. Epub 2016 Sep 1.

Icelandic Heart Association, Kopavogur, Iceland.

Background: In addition to lowering low density lipoprotein cholesterol (LDL-C), statin therapy also raises high density lipoprotein cholesterol (HDL-C) levels. Inter-individual variation in HDL-C response to statins may be partially explained by genetic variation.

Methods And Results: We performed a meta-analysis of genome-wide association studies (GWAS) to identify variants with an effect on statin-induced high density lipoprotein cholesterol (HDL-C) changes. The 123 most promising signals with p<1×10 from the 16 769 statin-treated participants in the first analysis stage were followed up in an independent group of 10 951 statin-treated individuals, providing a total sample size of 27 720 individuals. The only associations of genome-wide significance (p<5×10) were between minor alleles at the CETP locus and greater HDL-C response to statin treatment.

Conclusions: Based on results from this study that included a relatively large sample size, we suggest that CETP may be the only detectable locus with common genetic variants that influence HDL-C response to statins substantially in individuals of European descent. Although CETP is known to be associated with HDL-C, we provide evidence that this pharmacogenetic effect is independent of its association with baseline HDL-C levels.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/jmedgenet-2016-103966DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5309131PMC
December 2016
-->