Publications by authors named "Keren J Carss"

32 Publications

Assessing the Role of Rare Genetic Variation in Patients With Heart Failure.

JAMA Cardiol 2021 04;6(4):379-386

Institute for Genomic Medicine, Columbia University Medical Center, New York, New York.

Importance: Sequencing studies have identified causal genetic variants for distinct subtypes of heart failure (HF) such as hypertrophic or dilated cardiomyopathy. However, the role of rare, high-impact variants in HF, for which ischemic heart disease is the leading cause, has not been systematically investigated.

Objective: To assess the contribution of rare variants to all-cause HF with and without reduced left ventricular ejection fraction.

Design, Setting, And Participants: This was a retrospective analysis of clinical trials and a prospective epidemiological resource (UK Biobank). Whole-exome sequencing of patients with HF was conducted from the Candesartan in Heart Failure-Assessment of Reduction in Mortality and Morbidity (CHARM) and Controlled Rosuvastatin Multinational Trial in Heart Failure (CORONA) clinical trials. Data were collected from March 1999 to May 2003 for the CHARM studies and September 2003 to July 2007 for the CORONA study. Using a gene-based collapsing approach, the proportion of patients with HF and controls carrying rare and presumed deleterious variants was compared. The burden of pathogenic variants in known cardiomyopathy genes was also investigated to assess the diagnostic yield. Exome sequencing data were generated between January 2018 and October 2018, and analysis began October 2018 and ended April 2020.

Main Outcomes And Measures: Odds ratios and P values for genes enriched for rare and presumed deleterious variants in either patients with HF or controls and diagnostic yield of pathogenic variants in known cardiomyopathy genes.

Results: This study included 5942 patients with HF and 13 156 controls. The mean (SD) age was 68.9 (9.9) years and 4213 (70.9%) were male. A significant enrichment of protein-truncating variants in the TTN gene (P = 3.35 × 10-13; odds ratio, 2.54; 95% CI, 1.96-3.31) that was further increased after restriction to variants in exons constitutively expressed in the heart (odds ratio, 4.52; 95% CI, 3.10-6.68). Validation using UK Biobank data showed a similar enrichment (odds ratio, 4.97; 95% CI, 3.94-6.19 after restriction). In the clinical trials, 201 of 5916 patients with HF (3.4%) had a pathogenic or likely pathogenic cardiomyopathy variant implicating 21 different genes. Notably, 121 of 201 individuals (60.2%) had ischemic heart disease as the clinically identified etiology for the HF. Individuals with HF and preserved ejection fraction had only a slightly lower yield than individuals with midrange or reduced ejection fraction (20 of 767 [2.6%] vs 15 of 392 [3.8%] vs 166 of 4757 [3.5%]).

Conclusions And Relevance: An increased burden of diagnostic mendelian cardiomyopathy variants in a broad group of patients with HF of mostly ischemic etiology compared with controls was observed. This work provides further evidence that mendelian genetic conditions may represent an important subset of complex late-onset diseases such as HF, irrespective of the clinical presentation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1001/jamacardio.2020.6500DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7745141PMC
April 2021

Spontaneous Coronary Artery Dissection: Insights on Rare Genetic Variation From Genome Sequencing.

Circ Genom Precis Med 2020 12 30;13(6):e003030. Epub 2020 Oct 30.

Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, United Kingdom (A.A.B., T.R.W., S.E.H., D.P., A.A.-H., A.W., D.K., N.J.S., D.A.).

Background: Spontaneous coronary artery dissection (SCAD) occurs when an epicardial coronary artery is narrowed or occluded by an intramural hematoma. SCAD mainly affects women and is associated with pregnancy and systemic arteriopathies, particularly fibromuscular dysplasia. Variants in several genes, such as those causing connective tissue disorders, have been implicated; however, the genetic architecture is poorly understood. Here, we aim to better understand the diagnostic yield of rare variant genetic testing among a cohort of SCAD survivors and to identify genes or gene sets that have a significant enrichment of rare variants.

Methods: We sequenced a cohort of 384 SCAD survivors from the United Kingdom, alongside 13 722 UK Biobank controls and a validation cohort of 92 SCAD survivors. We performed a research diagnostic screen for pathogenic variants and exome-wide and gene-set rare variant collapsing analyses.

Results: The majority of patients within both cohorts are female, 29% of the study cohort and 14% validation cohort have a remote arteriopathy. Four cases across the 2 cohorts had a diagnosed connective tissue disorder. We identified pathogenic or likely pathogenic variants in 7 genes (, , , , , , and ) in 14/384 cases in the study cohort and in 1/92 cases in the validation cohort. In our rare variant collapsing analysis, was the highest-ranked gene, and several functionally plausible genes were enriched for rare variants, although no gene achieved study-wide statistical significance. Gene-set enrichment analysis suggested a role for additional genes involved in renal function.

Conclusions: By studying the largest sequenced cohort of SCAD survivors, we demonstrate that, based on current knowledge, only a small proportion have a pathogenic variant that could explain their disease. Our findings strengthen the overlap between SCAD and renal and connective tissue disorders, and we highlight several new genes for future validation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCGEN.120.003030DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7748045PMC
December 2020

Ceramide synthase TLCD3B is a novel gene associated with human recessive retinal dystrophy.

Genet Med 2021 03 20;23(3):488-497. Epub 2020 Oct 20.

Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.

Purpose: Previous studies suggest that ceramide is a proapoptotic lipid as high levels of ceramides can lead to apoptosis of neuronal cells, including photoreceptors. However, no pathogenic variant in ceramide synthases has been identified in human patients and knockout of various ceramide synthases in mice has not led to photoreceptor degeneration.

Methods: Exome sequencing was used to identify candidate disease genes in patients with vision loss as confirmed by standard evaluation methods, including electroretinography (ERG) and optical coherence tomography. The vision loss phenotype in mice was evaluated by ERG and histological analyses.

Results: Here we have identified four patients with cone-rod dystrophy or maculopathy from three families carrying pathogenic variants in TLCD3B. Consistent with the phenotype observed in patients, the Tlcd3b mice exhibited a significant reduction of the cone photoreceptor light responses, thinning of the outer nuclear layer, and loss of cone photoreceptors across the retina.

Conclusion: Our results provide a link between loss-of-function variants in a ceramide synthase gene and human retinal dystrophy. Establishment of the Tlcd3b knockout murine model, an in vivo photoreceptor cell degeneration model due to loss of a ceramide synthase, will provide a unique opportunity in probing the role of ceramide in survival and function of photoreceptor cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-020-01003-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7936949PMC
March 2021

Structural analysis of pathogenic missense mutations in GABRA2 and identification of a novel de novo variant in the desensitization gate.

Mol Genet Genomic Med 2020 07 29;8(7):e1106. Epub 2020 Apr 29.

NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK.

Background: Cys-loop receptors control neuronal excitability in the brain and their dysfunction results in numerous neurological disorders. Recently, six missense variants in GABRA2, a member of this family, have been associated with early infantile epileptic encephalopathy (EIEE). We identified a novel de novo missense variant in GABRA2 in a patient with EIEE and performed protein structural analysis of the seven variants.

Methods: The novel variant was identified by trio whole-genome sequencing. We performed protein structural analysis of the seven variants, and compared them to previously reported pathogenic mutations at equivalent positions in other Cys-loop receptors. Additionally, we studied the distribution of disease-associated variants in the transmembrane helices of these proteins.

Results: The seven variants are in the transmembrane domain, either close to the desensitization gate, the activation gate, or in inter-subunit interfaces. Six of them have pathogenic mutations at equivalent positions in other Cys-loop receptors, emphasizing the importance of these residues. Also, pathogenic mutations are more common in the pore-lining helix, consistent with this region being highly constrained for variation in control populations.

Conclusion: Our study reports a novel pathogenic variant in GABRA2, characterizes the regions where pathogenic mutations are in the transmembrane helices, and underscores the value of considering sequence, evolutionary, and structural information as a strategy for variant interpretation of novel missense mutations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/mgg3.1106DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7336760PMC
July 2020

Rare Genetic Variation in 135 Families With Family History Suggestive of X-Linked Intellectual Disability.

Front Genet 2019 26;10:578. Epub 2019 Jun 26.

Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom.

Families with multiple male children with intellectual disability (ID) are usually suspected of having disease due to a X-linked mode of inheritance and genetic studies focus on analysis of segregating variants in X-linked genes. However, the genetic cause of ID remains elusive in approximately 50% of affected individuals. Here, we report the analysis of next-generation sequencing data in 274 affected individuals from 135 families with a family history suggestive of X-linked ID. Genetic diagnoses were obtained for 19% (25/135) of the families, and 24% (33/135) had a variant of uncertain significance. In 12% of cases (16/135), the variants were not shared within the family, suggesting genetic heterogeneity and phenocopies are frequent. Of all the families with reportable variants (43%, 58/135), we observed that 55% (32/58) were in X-linked genes, but 38% (22/58) were in autosomal genes, while the remaining 7% (4/58) had multiple variants in genes with different modes on inheritance. This study highlights that in families with multiple affected males, X linkage should not be assumed, and both individuals should be considered, as different genetic etiologies are common in apparent familial cases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fgene.2019.00578DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6609311PMC
June 2019

Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia.

Am J Hum Genet 2019 05 11;104(5):948-956. Epub 2019 Apr 11.

Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.

The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Ca2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Ca2.2 in normal human neurodevelopment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2019.03.005DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6507039PMC
May 2019

Unique noncoding variants upstream of PRDM13 are associated with a spectrum of developmental retinal dystrophies including progressive bifocal chorioretinal atrophy.

Hum Mutat 2019 05 14;40(5):578-587. Epub 2019 Feb 14.

UCL Institute of Ophthalmology, University College London, London, United Kingdom.

The autosomal dominant progressive bifocal chorioretinal atrophy (PBCRA) disease locus has been mapped to chromosome 6q14-16.2 that overlaps the North Carolina macular dystrophy (NCMD) locus MCDR1. NCMD is a nonprogressive developmental macular dystrophy, in which variants upstream of PRDM13 have been implicated. Whole genome sequencing was performed to interrogate structural variants (SVs) and single nucleotide variants (SNVs) in eight individuals, six affected individuals from two families with PBCRA, and two individuals from an additional family with a related developmental macular dystrophy. A SNV (chr6:100,046,804T>C), located 7.8 kb upstream of the PRDM13 gene, was shared by all PBCRA-affected individuals in the disease locus. Haplotype analysis suggested that the variant arose independently in the two families. The two affected individuals from Family 3 were screened for rare variants in the PBCRA and NCMD loci. This revealed a de novo variant in the proband, 21 bp from the first SNV (chr6:100,046,783A>C). This study expands the noncoding variant spectrum upstream of PRDM13 and suggests altered spatio-temporal expression of PRDM13 as a candidate disease mechanism in the phenotypically distinct but related conditions, NCMD and PBCRA.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/humu.23715DOI Listing
May 2019

Deep-intronic ABCA4 variants explain missing heritability in Stargardt disease and allow correction of splice defects by antisense oligonucleotides.

Genet Med 2019 08 15;21(8):1751-1760. Epub 2019 Jan 15.

Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.

Purpose: Using exome sequencing, the underlying variants in many persons with autosomal recessive diseases remain undetected. We explored autosomal recessive Stargardt disease (STGD1) as a model to identify the missing heritability.

Methods: Sequencing of ABCA4 was performed in 8 STGD1 cases with one variant and p.Asn1868Ile in trans, 25 cases with one variant, and 3 cases with no ABCA4 variant. The effect of intronic variants was analyzed using in vitro splice assays in HEK293T cells and patient-derived fibroblasts. Antisense oligonucleotides were used to correct splice defects.

Results: In 24 of the probands (67%), one known and five novel deep-intronic variants were found. The five novel variants resulted in messenger RNA pseudoexon inclusions, due to strengthening of cryptic splice sites or by disrupting a splicing silencer motif. Variant c.769-784C>T showed partial insertion of a pseudoexon and was found in cis with c.5603A>T (p.Asn1868Ile), so its causal role could not be fully established. Variant c.4253+43G>A resulted in partial skipping of exon 28. Remarkably, antisense oligonucleotides targeting the aberrant splice processes resulted in (partial) correction of all splicing defects.

Conclusion: Our data demonstrate the importance of assessing noncoding variants in genetic diseases, and show the great potential of splice modulation therapy for deep-intronic variants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-018-0414-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6752325PMC
August 2019

Complex structural variants in Mendelian disorders: identification and breakpoint resolution using short- and long-read genome sequencing.

Genome Med 2018 12 7;10(1):95. Epub 2018 Dec 7.

Department of Haematology, University of Cambridge, NHS Blood and Transplant Centre, Cambridge, CB2 0PT, UK.

Background: Studies have shown that complex structural variants (cxSVs) contribute to human genomic variation and can cause Mendelian disease. We aimed to identify cxSVs relevant to Mendelian disease using short-read whole-genome sequencing (WGS), resolve the precise variant configuration and investigate possible mechanisms of cxSV formation.

Methods: We performed short-read WGS and analysis of breakpoint junctions to identify cxSVs in a cohort of 1324 undiagnosed rare disease patients. Long-read WGS and gene expression analysis were used to resolve one case.

Results: We identified three pathogenic cxSVs: a de novo duplication-inversion-inversion-deletion affecting ARID1B, a de novo deletion-inversion-duplication affecting HNRNPU and a homozygous deletion-inversion-deletion affecting CEP78. Additionally, a de novo duplication-inversion-duplication overlapping CDKL5 was resolved by long-read WGS demonstrating the presence of both a disrupted and an intact copy of CDKL5 on the same allele, and gene expression analysis showed both parental alleles of CDKL5 were expressed. Breakpoint analysis in all the cxSVs revealed both microhomology and longer repetitive elements.

Conclusions: Our results corroborate that cxSVs cause Mendelian disease, and we recommend their consideration during clinical investigations. We show that resolution of breakpoints can be critical to interpret pathogenicity and present evidence of replication-based mechanisms in cxSV formation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13073-018-0606-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6286558PMC
December 2018

Whole genome sequencing reveals novel mutations causing autosomal dominant inherited macular degeneration.

Ophthalmic Genet 2018 12 19;39(6):763-770. Epub 2018 Nov 19.

a Department of Ophthalmology , Moorfields Eye Hospital , London , UK.

Background: Age-related macular degeneration (AMD) is a common sight threatening condition. However, there are a number of monogenic macular dystrophies that are clinically similar to AMD, which can potentially provide pathogenetic insights.

Methods: Three siblings from a non-consanguineous Greek-Cypriot family reported central visual disturbance and nyctalopia. The patients had full ophthalmic examinations and color fundus photography, spectral-domain ocular coherence tomography and scanning laser ophthalmoscopy. Targeted polymerase chain reaction (PCR) was performed as a first step to attempt to identify suspected mutations in C1QTNF5 and TIMP3 followed by whole genome sequencing.

Results: The three patients were noted to have symptoms of nyctalopia, early paracentral visual field loss and, in older patients, central vision loss. Imaging identified pseudodrusen, retinal atrophy and RPE-Bruch's membrane separation. Whole genome sequencing of the proband revealed two novel heterozygous variants in C1QTNF5, c.556C>T, and c.569C>G. The mutation segregated with disease in this family, occurred in cis, and resulted in missense amino acid changes P186S and S190W in C1QTNF5. In silico modeling of the variants revealed that the S190W mutations was likely to have the greatest pathologic effect and that the combination of the mutations was likely to have an additive effect.

Conclusions: The novel mutations in C1QTNF5 identified here expand the genotypic spectrum of mutations causing late-onset retinal dystrophy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/13816810.2018.1546406DOI Listing
December 2018

Clinical Features of a Retinopathy Associated With a Dominant Allele of the RGR Gene.

Invest Ophthalmol Vis Sci 2018 10;59(12):4812-4820

UCL Institute of Ophthalmology, London, United Kingdom.

Purpose: We describe the clinical features in two pedigrees with dominantly inherited retinopathy segregating the previously reported frameshifting mutation, c.836dupG (p.Ile280Asn*78) in the terminal exon of the RGR gene, and compare their haplotypes to that of the previously reported pedigree.

Methods: The probands were ascertained at West Virginia University Eye Institute (WVU) and Moorfields Eye Hospital (MEH) through next generation sequencing (NGS) and whole genome sequencing (WGS) respectively. Clinical data included visual acuity (VA), visual fields, fundus autofluorescence (FAF), optical coherence tomography (OCT), and electroretinography (ERG). Haplotype analysis was performed using Sanger sequencing of the DNA from the molecularly ascertained individuals from the three pedigrees.

Results: Nine heterozygous mutation carriers were identified in two families. Four carriers were asymptomatic; five carriers had variable VA reduction, visual field constriction, and experienced difficulty under dim illumination. Fundus examination of the asymptomatic carriers showed diffuse or reticular pigmentation of the retina; the symptomatic carriers had chorioretinal atrophy. FAF imaging showed widespread signal loss in advanced retinopathy, and reticular hyperautofluorescence in mild cases. OCT showed loss of outer retinal lamina in advanced disease. ERG showed moderate-to-severe rod-cone dysfunction in two symptomatic carriers; and was normal in three asymptomatic carriers. A shared haplotype flanking the mutation of up to 6.67 Mb was identified in both families. Within this region, 1.27 Mb were shared with the first family reported with this retinopathy.

Conclusions: The clinical data suggest a variable and slow degeneration of the RPE. A shared chromosomal segment surrounding the RGR gene suggests a single ancestral mutational event underlying all three families.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1167/iovs.18-25061DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6181194PMC
October 2018

De Novo Pathogenic Variants in CACNA1E Cause Developmental and Epileptic Encephalopathy with Contractures, Macrocephaly, and Dyskinesias.

Am J Hum Genet 2018 11 18;103(5):666-678. Epub 2018 Oct 18.

Division of Genetics and Metabolism, Phoenix Children's Hospital, Phoenix, AZ 85016, USA.

Developmental and epileptic encephalopathies (DEEs) are severe neurodevelopmental disorders often beginning in infancy or early childhood that are characterized by intractable seizures, abundant epileptiform activity on EEG, and developmental impairment or regression. CACNA1E is highly expressed in the central nervous system and encodes the α-subunit of the voltage-gated Ca2.3 channel, which conducts high voltage-activated R-type calcium currents that initiate synaptic transmission. Using next-generation sequencing techniques, we identified de novo CACNA1E variants in 30 individuals with DEE, characterized by refractory infantile-onset seizures, severe hypotonia, and profound developmental impairment, often with congenital contractures, macrocephaly, hyperkinetic movement disorders, and early death. Most of the 14, partially recurring, variants cluster within the cytoplasmic ends of all four S6 segments, which form the presumed Ca2.3 channel activation gate. Functional analysis of several S6 variants revealed consistent gain-of-function effects comprising facilitated voltage-dependent activation and slowed inactivation. Another variant located in the domain II S4-S5 linker results in facilitated activation and increased current density. Five participants achieved seizure freedom on the anti-epileptic drug topiramate, which blocks R-type calcium channels. We establish pathogenic variants in CACNA1E as a cause of DEEs and suggest facilitated R-type calcium currents as a disease mechanism for human epilepsy and developmental disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2018.09.006DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6216110PMC
November 2018

Novel homozygous splicing mutations in cause autosomal recessive retinitis pigmentosa.

Mol Vis 2018 31;24:603-612. Epub 2018 Aug 31.

UCL Institute of Ophthalmology, London, UK.

Purpose: Mutations in encoding ADP-ribosylation factor-like 2 binding protein, have recently been implicated as a cause of autosomal recessive retinitis pigmentosa (arRP), with three homozygous variants identified to date. In this study, we performed next-generation sequencing to reveal additional arRP cases associated with variants.

Methods: Whole-genome sequencing (WGS) or whole-exome sequencing (WES) was performed in 1,051 unrelated individuals recruited for the UK Inherited Retinal Disease Consortium and NIHR-BioResource Rare Diseases research studies. Sanger sequencing was used to validate the next-generation sequencing data, and reverse transcriptase (RT)-PCR analysis was performed on RNA extracted from blood from affected individuals to test for altered splicing of . Detailed phenotyping was performed, including clinical evaluation, electroretinography, fundus photography, fundus autofluorescence imaging, and spectral-domain optical coherence tomography.

Results: Homozygous variants in (NM_012106.3) were identified in two unrelated individuals with RP. The variants, c.207+1G>A and c.390+5G>A, at conserved splice donor sites for intron 3 and intron 5, respectively, were predicted to alter the pre-mRNA splicing of . RT-PCR spanning the affected introns revealed that both variants caused abnormal splicing of in samples from affected individuals.

Conclusions: This study identified two homozygous variants in as a rare cause of arRP. Further studies are required to define the underlying disease mechanism causing retinal degeneration as a result of mutations in and any phenotype-genotype correlation associated with residual levels of the wild-type transcript.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6128700PMC
November 2018

De Novo Truncating Mutations in WASF1 Cause Intellectual Disability with Seizures.

Am J Hum Genet 2018 07 28;103(1):144-153. Epub 2018 Jun 28.

NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK. Electronic address:

Next-generation sequencing has been invaluable in the elucidation of the genetic etiology of many subtypes of intellectual disability in recent years. Here, using exome sequencing and whole-genome sequencing, we identified three de novo truncating mutations in WAS protein family member 1 (WASF1) in five unrelated individuals with moderate to profound intellectual disability with autistic features and seizures. WASF1, also known as WAVE1, is part of the WAVE complex and acts as a mediator between Rac-GTPase and actin to induce actin polymerization. The three mutations connected by Matchmaker Exchange were c.1516C>T (p.Arg506Ter), which occurs in three unrelated individuals, c.1558C>T (p.Gln520Ter), and c.1482delinsGCCAGG (p.Ile494MetfsTer23). All three variants are predicted to partially or fully disrupt the C-terminal actin-binding WCA domain. Functional studies using fibroblast cells from two affected individuals with the c.1516C>T mutation showed a truncated WASF1 and a defect in actin remodeling. This study provides evidence that de novo heterozygous mutations in WASF1 cause a rare form of intellectual disability.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2018.06.001DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6037130PMC
July 2018

Loss-of-function nuclear factor κB subunit 1 (NFKB1) variants are the most common monogenic cause of common variable immunodeficiency in Europeans.

J Allergy Clin Immunol 2018 10 2;142(4):1285-1296. Epub 2018 Mar 2.

Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands; Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands; Department of Internal Medicine, Academic Medical Center, Amsterdam, The Netherlands. Electronic address:

Background: The genetic cause of primary immunodeficiency disease (PID) carries prognostic information.

Objective: We conducted a whole-genome sequencing study assessing a large proportion of the NIHR BioResource-Rare Diseases cohort.

Methods: In the predominantly European study population of principally sporadic unrelated PID cases (n = 846), a novel Bayesian method identified nuclear factor κB subunit 1 (NFKB1) as one of the genes most strongly associated with PID, and the association was explained by 16 novel heterozygous truncating, missense, and gene deletion variants. This accounted for 4% of common variable immunodeficiency (CVID) cases (n = 390) in the cohort. Amino acid substitutions predicted to be pathogenic were assessed by means of analysis of structural protein data. Immunophenotyping, immunoblotting, and ex vivo stimulation of lymphocytes determined the functional effects of these variants. Detailed clinical and pedigree information was collected for genotype-phenotype cosegregation analyses.

Results: Both sporadic and familial cases demonstrated evidence of the noninfective complications of CVID, including massive lymphadenopathy (24%), unexplained splenomegaly (48%), and autoimmune disease (48%), features prior studies correlated with worse clinical prognosis. Although partial penetrance of clinical symptoms was noted in certain pedigrees, all carriers have a deficiency in B-lymphocyte differentiation. Detailed assessment of B-lymphocyte numbers, phenotype, and function identifies the presence of an increased CD21 B-cell population. Combined with identification of the disease-causing variant, this distinguishes between healthy subjects, asymptomatic carriers, and clinically affected cases.

Conclusion: We show that heterozygous loss-of-function variants in NFKB1 are the most common known monogenic cause of CVID, which results in a temporally progressive defect in the formation of immunoglobulin-producing B cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jaci.2018.01.039DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6148345PMC
October 2018

A clinical and molecular characterisation of CRB1-associated maculopathy.

Eur J Hum Genet 2018 05 1;26(5):687-694. Epub 2018 Feb 1.

University College London Institute of Ophthalmology, University College London, London, UK.

To date, over 150 disease-associated variants in CRB1 have been described, resulting in a range of retinal disease phenotypes including Leber congenital amaurosis and retinitis pigmentosa. Despite this, no genotype-phenotype correlations are currently recognised. We performed a retrospective review of electronic patient records to identify patients with macular dystrophy due to bi-allelic variants in CRB1. In total, seven unrelated individuals were identified. The median age at presentation was 21 years, with a median acuity of 0.55 decimalised Snellen units (IQR = 0.43). The follow-up period ranged from 0 to 19 years (median = 2.0 years), with a median final decimalised Snellen acuity of 0.65 (IQR = 0.70). Fundoscopy revealed only a subtly altered foveal reflex, which evolved into a bull's-eye pattern of outer retinal atrophy. Optical coherence tomography identified structural changes-intraretinal cysts in the early stages of disease, and later outer retinal atrophy. Genetic testing revealed that one rare allele (c.498_506del, p.(Ile167_Gly169del)) was present in all patients, with one patient being homozygous for the variant and six being heterozygous. In trans with this, one variant recurred twice (p.(Cys896Ter)), while the four remaining alleles were each observed once (p.(Pro1381Thr), p.(Ser478ProfsTer24), p.(Cys195Phe) and p.(Arg764Cys)). These findings show that the rare CRB1 variant, c.498_506del, is strongly associated with localised retinal dysfunction. The clinical findings are much milder than those observed with bi-allelic, loss-of-function variants in CRB1, suggesting this in-frame deletion acts as a hypomorphic allele. This is the most prevalent disease-causing CRB1 variant identified in the non-Asian population to date.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41431-017-0082-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5945653PMC
May 2018

Assessment of the incorporation of CNV surveillance into gene panel next-generation sequencing testing for inherited retinal diseases.

J Med Genet 2018 02 26;55(2):114-121. Epub 2017 Oct 26.

Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, Manchester University NHS Foundation Trust, St Mary's Hospital, Manchester, UK.

Background: Diagnostic use of gene panel next-generation sequencing (NGS) techniques is commonplace for individuals with inherited retinal dystrophies (IRDs), a highly genetically heterogeneous group of disorders. However, these techniques have often failed to capture the complete spectrum of genomic variation causing IRD, including CNVs. This study assessed the applicability of introducing CNV surveillance into first-tier diagnostic gene panel NGS services for IRD.

Methods: Three read-depth algorithms were applied to gene panel NGS data sets for 550 referred individuals, and informatics strategies used for quality assurance and CNV filtering. CNV events were confirmed and reported to referring clinicians through an accredited diagnostic laboratory.

Results: We confirmed the presence of 33 deletions and 11 duplications, determining these findings to contribute to the confirmed or provisional molecular diagnosis of IRD for 25 individuals. We show that at least 7% of individuals referred for diagnostic testing for IRD have a CNV within genes relevant to their clinical diagnosis, and determined a positive predictive value of 79% for the employed CNV filtering techniques.

Conclusion: Incorporation of CNV analysis increases diagnostic yield of gene panel NGS diagnostic tests for IRD, increases clarity in diagnostic reporting and expands the spectrum of known disease-causing mutations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/jmedgenet-2017-104791DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5800348PMC
February 2018

encephalopathy: Broadening the phenotype and evaluating treatment and outcome.

Neurol Genet 2017 Apr 21;3(2):e143. Epub 2017 Mar 21.

Department of Paediatrics, Child Neurology and Psychiatry (F.R.D., S.G., V.L.), Sapienza University of Rome, Italy; Molecular Neurosciences, Developmental Neurosciences Programme (F.R.D., J.N., A.M., M.A.K.), University College London Institute of Child Health, UK; Department of Neurology (F.R.D., J.N., A.M., M.A.K.), Great Ormond Street Hospital for Children, London, UK; GENOMA Group (M.R.), Molecular Genetics Laboratory, Rome, Italy; Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories (M.M., E.P., C.B., R.G.), Neuroscience Department, A Meyer Children's Hospital, University of Florence, Italy; Department of Haematology (K.J.C.), University of Cambridge, NHS Blood and Transplant Centre, UK; NIHR Bioresource Rare Diseases (K.J.C., F.L.R.), University of Cambridge, UK; Department of Neurology (N.M.), Westmead Hospital, Sydney, Australia; Childrens Hospital Oxford (T.M.), John Radcliffe Hospital, UK; Institute for Neuroscience and Muscle Research (R.C.D., S.S.M., U.S.), the Children's Hospital at Westmead, University of Sydney, Australia; Department of Medical Genetics (F.L.R.), Cambridge Institute for Medical Research, University of Cambridge, UK; Department of Neurology (R.S.), University Hospitals Leicester NHS Trust, UK; Department of Paediatric Neurology (G.V.), Leeds Teaching Hospitals NHS Trust, UK; Section of Neurosciences (E.M.V.), Department of Medicine and Surgery, University of Salerno, Italy; and Neurogenetics Unit (E.M.V.), IRCCS Fondazione Santa Lucia, Rome, Italy.

Objective: To describe better the motor phenotype, molecular genetic features, and clinical course of -related disease.

Methods: We reviewed clinical information, video recordings, and neuroimaging of a newly identified cohort of 7 patients with de novo missense and splice site mutations, detected by next-generation sequencing techniques.

Results: Patients first presented in early childhood (median age of presentation 10 months, range 0-48 months), with a wide range of clinical symptoms ranging from severe motor and cognitive impairment with marked choreoathetosis, self-injurious behavior, and epileptic encephalopathy to a milder phenotype, featuring moderate developmental delay associated with complex stereotypies, mainly facial dyskinesia and mild epilepsy. Hyperkinetic movements were often exacerbated by specific triggers, such as voluntary movement, intercurrent illnesses, emotion, and high ambient temperature, leading to hospital admissions. Most patients were resistant to drug intervention, although tetrabenazine was effective in partially controlling dyskinesia for 2/7 patients. Emergency deep brain stimulation (DBS) was life saving in 1 patient, resulting in immediate clinical benefit with complete cessation of violent hyperkinetic movements. Five patients had well-controlled epilepsy and 1 had drug-resistant seizures. Structural brain abnormalities, including mild cerebral atrophy and corpus callosum dysgenesis, were evident in 5 patients. One patient had a diffuse astrocytoma (WHO grade II), surgically removed at age 16.

Conclusions: Our findings support the causative role of mutations in an expanded spectrum of early-onset epilepsy and movement disorders, frequently exacerbated by specific triggers and at times associated with self-injurious behavior. Tetrabenazine and DBS were the most useful treatments for dyskinesia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1212/NXG.0000000000000143DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5362187PMC
April 2017

DETAILED RETINAL IMAGING IN CARRIERS OF OCULAR ALBINISM.

Retina 2018 Mar;38(3):620-628

University College London Institute of Ophthalmology, University College London, London, United Kingdom.

Background: Albinism refers to a group of disorders primarily characterized by hypopigmentation. Affected individuals usually manifest both ocular and cutaneous features of the disease, but occasionally hair and skin pigmentation may appear normal. This is the case in ocular albinism, an X chromosome linked disorder resulting from mutation of GPR143. Female carriers may be recognized by a "mud-splatter" appearance in the peripheral retina. The macula is thought to be normal, however.

Methods: Obligate female carriers of pathogenic GPR143 alleles were recruited. Molecular confirmation of disease was performed only for atypical cases. Detailed retinal imaging was performed (colour fundus photography, optical coherence tomography, fundus autofluorescence.

Results: Eight individuals were ascertained. A novel GPR143 mutation was identified in one family (p.Gln328Ter). Foveal fundus autofluorescence was subjectively reduced in 6/6 patients imaged. A "tapetal-like" pattern of autofluorescence was visible at the macula in 3/6. Persistence of the inner retinal layers at the fovea was observed in 6/8 females.

Conclusion: Female carriers of ocular albinism may manifest signs of retinal pigment epithelium mosaicism at the macula and the peripheral fundus. A tapetal-like reflex on fundus autofluorescence may be considered the macular correlate of "mud-splatter."
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/IAE.0000000000001570DOI Listing
March 2018

Biallelic Mutation of ARHGEF18, Involved in the Determination of Epithelial Apicobasal Polarity, Causes Adult-Onset Retinal Degeneration.

Am J Hum Genet 2017 Feb 26;100(2):334-342. Epub 2017 Jan 26.

UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK; Moorfields Eye Hospital, London EC1V 2PD, UK. Electronic address:

Mutations in more than 250 genes are implicated in inherited retinal dystrophy; the encoded proteins are involved in a broad spectrum of pathways. The presence of unsolved families after highly parallel sequencing strategies suggests that further genes remain to be identified. Whole-exome and -genome sequencing studies employed here in large cohorts of affected individuals revealed biallelic mutations in ARHGEF18 in three such individuals. ARHGEF18 encodes ARHGEF18, a guanine nucleotide exchange factor that activates RHOA, a small GTPase protein that is a key component of tight junctions and adherens junctions. This biological pathway is known to be important for retinal development and function, as mutation of CRB1, encoding another component, causes retinal dystrophy. The retinal structure in individuals with ARHGEF18 mutations resembled that seen in subjects with CRB1 mutations. Five mutations were found on six alleles in the three individuals: c.808A>G (p.Thr270Ala), c.1617+5G>A (p.Asp540Glyfs63), c.1996C>T (p.Arg666), c.2632G>T (p.Glu878), and c.2738_2761del (p.Arg913_Glu920del). Functional tests suggest that each disease genotype might retain some ARHGEF18 activity, such that the phenotype described here is not the consequence of nullizygosity. In particular, the p.Thr270Ala missense variant affects a highly conserved residue in the DBL homology domain, which is required for the interaction and activation of RHOA. Previously, knock-out of Arhgef18 in the medaka fish has been shown to cause larval lethality which is preceded by retinal defects that resemble those seen in zebrafish Crumbs complex knock-outs. The findings described here emphasize the peculiar sensitivity of the retina to perturbations of this pathway, which is highlighted as a target for potential therapeutic strategies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2016.12.014DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5294887PMC
February 2017

Comprehensive Rare Variant Analysis via Whole-Genome Sequencing to Determine the Molecular Pathology of Inherited Retinal Disease.

Am J Hum Genet 2017 01 29;100(1):75-90. Epub 2016 Dec 29.

NIHR BioResource - Rare Diseases, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; Great Ormond Street Hospital for Children, Great Ormond Street, London WC1N 3JH, UK.

Inherited retinal disease is a common cause of visual impairment and represents a highly heterogeneous group of conditions. Here, we present findings from a cohort of 722 individuals with inherited retinal disease, who have had whole-genome sequencing (n = 605), whole-exome sequencing (n = 72), or both (n = 45) performed, as part of the NIHR-BioResource Rare Diseases research study. We identified pathogenic variants (single-nucleotide variants, indels, or structural variants) for 404/722 (56%) individuals. Whole-genome sequencing gives unprecedented power to detect three categories of pathogenic variants in particular: structural variants, variants in GC-rich regions, which have significantly improved coverage compared to whole-exome sequencing, and variants in non-coding regulatory regions. In addition to previously reported pathogenic regulatory variants, we have identified a previously unreported pathogenic intronic variant in CHM in two males with choroideremia. We have also identified 19 genes not previously known to be associated with inherited retinal disease, which harbor biallelic predicted protein-truncating variants in unsolved cases. Whole-genome sequencing is an increasingly important comprehensive method with which to investigate the genetic causes of inherited retinal disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2016.12.003DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5223092PMC
January 2017

Mutations in the histone methyltransferase gene KMT2B cause complex early-onset dystonia.

Nat Genet 2017 Feb 19;49(2):223-237. Epub 2016 Dec 19.

Child and Adolescent Health, University of Sydney, Sydney, New South Wales, Australia.

Histone lysine methylation, mediated by mixed-lineage leukemia (MLL) proteins, is now known to be critical in the regulation of gene expression, genomic stability, cell cycle and nuclear architecture. Despite MLL proteins being postulated as essential for normal development, little is known about the specific functions of the different MLL lysine methyltransferases. Here we report heterozygous variants in the gene KMT2B (also known as MLL4) in 27 unrelated individuals with a complex progressive childhood-onset dystonia, often associated with a typical facial appearance and characteristic brain magnetic resonance imaging findings. Over time, the majority of affected individuals developed prominent cervical, cranial and laryngeal dystonia. Marked clinical benefit, including the restoration of independent ambulation in some cases, was observed following deep brain stimulation (DBS). These findings highlight a clinically recognizable and potentially treatable form of genetic dystonia, demonstrating the crucial role of KMT2B in the physiological control of voluntary movement.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ng.3740DOI Listing
February 2017

Mutations in REEP6 Cause Autosomal-Recessive Retinitis Pigmentosa.

Am J Hum Genet 2016 Dec 23;99(6):1305-1315. Epub 2016 Nov 23.

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030-3411, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030-3411, USA. Electronic address:

Retinitis pigmentosa (RP) is the most frequent form of inherited retinal dystrophy. RP is genetically heterogeneous and the genes identified to date encode proteins involved in a wide range of functional pathways, including photoreceptor development, phototransduction, the retinoid cycle, cilia, and outer segment development. Here we report the identification of biallelic mutations in Receptor Expression Enhancer Protein 6 (REEP6) in seven individuals with autosomal-recessive RP from five unrelated families. REEP6 is a member of the REEP/Yop1 family of proteins that influence the structure of the endoplasmic reticulum but is relatively unstudied. The six variants identified include three frameshift variants, two missense variants, and a genomic rearrangement that disrupts exon 1. Human 3D organoid optic cups were used to investigate REEP6 expression and confirmed the expression of a retina-specific isoform REEP6.1, which is specifically affected by one of the frameshift mutations. Expression of the two missense variants (c.383C>T [p.Pro128Leu] and c.404T>C [p.Leu135Pro]) and the REEP6.1 frameshift mutant in cultured cells suggest that these changes destabilize the protein. Furthermore, CRISPR-Cas9-mediated gene editing was used to produce Reep6 knock-in mice with the p.Leu135Pro RP-associated variant identified in one RP-affected individual. The homozygous knock-in mice mimic the clinical phenotypes of RP, including progressive photoreceptor degeneration and dysfunction of the rod photoreceptors. Therefore, our study implicates REEP6 in retinal homeostasis and highlights a pathway previously uncharacterized in retinal dystrophy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2016.10.008DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5142109PMC
December 2016

Phenotypic insights into ADCY5-associated disease.

Mov Disord 2016 07 8;31(7):1033-40. Epub 2016 Apr 8.

Movement Disorders Unit, Department of Neurology, Westmead Hospital, Sydney, Australia.

Background: Adenylyl cyclase 5 (ADCY5) mutations is associated with heterogenous syndromes: familial dyskinesia and facial myokymia; paroxysmal chorea and dystonia; autosomal-dominant chorea and dystonia; and benign hereditary chorea. We provide detailed clinical data on 7 patients from six new kindreds with mutations in the ADCY5 gene, in order to expand and define the phenotypic spectrum of ADCY5 mutations.

Methods: In 5 of the 7 patients, followed over a period of 9 to 32 years, ADCY5 was sequenced by Sanger sequencing. The other 2 unrelated patients participated in studies for undiagnosed pediatric hyperkinetic movement disorders and underwent whole-exome sequencing.

Results: Five patients had the previously reported p.R418W ADCY5 mutation; we also identified two novel mutations at p.R418G and p.R418Q. All patients presented with motor milestone delay, infantile-onset action-induced generalized choreoathetosis, dystonia, or myoclonus, with episodic exacerbations during drowsiness being a characteristic feature. Axial hypotonia, impaired upward saccades, and intellectual disability were variable features. The p.R418G and p.R418Q mutation patients had a milder phenotype. Six of seven patients had mild functional gain with clonazepam or clobazam. One patient had bilateral globus pallidal DBS at the age of 33 with marked reduction in dyskinesia, which resulted in mild functional improvement.

Conclusion: We further delineate the clinical features of ADCY5 gene mutations and illustrate its wide phenotypic expression. We describe mild improvement after treatment with clonazepam, clobazam, and bilateral pallidal DBS. ADCY5-associated dyskinesia may be under-recognized, and its diagnosis has important prognostic, genetic, and therapeutic implications. © 2016 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/mds.26598DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4950003PMC
July 2016

Exome sequencing improves genetic diagnosis of structural fetal abnormalities revealed by ultrasound.

Hum Mol Genet 2014 Jun 29;23(12):3269-77. Epub 2014 Jan 29.

Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK.

The genetic etiology of non-aneuploid fetal structural abnormalities is typically investigated by karyotyping and array-based detection of microscopically detectable rearrangements, and submicroscopic copy-number variants (CNVs), which collectively yield a pathogenic finding in up to 10% of cases. We propose that exome sequencing may substantially increase the identification of underlying etiologies. We performed exome sequencing on a cohort of 30 non-aneuploid fetuses and neonates (along with their parents) with diverse structural abnormalities first identified by prenatal ultrasound. We identified candidate pathogenic variants with a range of inheritance models, and evaluated these in the context of detailed phenotypic information. We identified 35 de novo single-nucleotide variants (SNVs), small indels, deletions or duplications, of which three (accounting for 10% of the cohort) are highly likely to be causative. These are de novo missense variants in FGFR3 and COL2A1, and a de novo 16.8 kb deletion that includes most of OFD1. In five further cases (17%) we identified de novo or inherited recessive or X-linked variants in plausible candidate genes, which require additional validation to determine pathogenicity. Our diagnostic yield of 10% is comparable to, and supplementary to, the diagnostic yield of existing microarray testing for large chromosomal rearrangements and targeted CNV detection. The de novo nature of these events could enable couples to be counseled as to their low recurrence risk. This study outlines the way for a substantial improvement in the diagnostic yield of prenatal genetic abnormalities through the application of next-generation sequencing.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddu038DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4030780PMC
June 2014

Exome Sequencing in Fetuses with Structural Malformations.

J Clin Med 2014 Jul 8;3(3):747-62. Epub 2014 Jul 8.

Centre of Women's and Children's Health & School of Clinical and Experimental Medicine, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.

Prenatal diagnostic testing is a rapidly advancing field. An accurate diagnosis of structural anomalies and additional abnormalities in fetuses with structural anomalies is important to allow "triage" and designation of prognosis. This will allow parents to make an informed decision relating to the pregnancy. This review outlines the current tests used in prenatal diagnosis, focusing particularly on "new technologies" such as exome sequencing. We demonstrate the utility of exome sequencing above that of conventional karyotyping and Chromosomal Microarray (CMA) alone by outlining a recent proof of concept study investigating 30 parent-fetus trios where the fetus is known to have a structural anomaly. This may allow the identification of pathological gene anomalies and consequently improved prognostic profiling, as well as excluding anomalies and distinguishing between de novo and inherited mutations, in order to estimate the recurrence risk in future pregnancies. The potential ethical dilemmas surrounding exome sequencing are also considered, and the future of prenatal genetic diagnosis is discussed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/jcm3030747DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4449643PMC
July 2014

Mutations in GDP-mannose pyrophosphorylase B cause congenital and limb-girdle muscular dystrophies associated with hypoglycosylation of α-dystroglycan.

Am J Hum Genet 2013 Jul 13;93(1):29-41. Epub 2013 Jun 13.

Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK.

Congenital muscular dystrophies with hypoglycosylation of α-dystroglycan (α-DG) are a heterogeneous group of disorders often associated with brain and eye defects in addition to muscular dystrophy. Causative variants in 14 genes thought to be involved in the glycosylation of α-DG have been identified thus far. Allelic mutations in these genes might also cause milder limb-girdle muscular dystrophy phenotypes. Using a combination of exome and Sanger sequencing in eight unrelated individuals, we present evidence that mutations in guanosine diphosphate mannose (GDP-mannose) pyrophosphorylase B (GMPPB) can result in muscular dystrophy variants with hypoglycosylated α-DG. GMPPB catalyzes the formation of GDP-mannose from GTP and mannose-1-phosphate. GDP-mannose is required for O-mannosylation of proteins, including α-DG, and it is the substrate of cytosolic mannosyltransferases. We found reduced α-DG glycosylation in the muscle biopsies of affected individuals and in available fibroblasts. Overexpression of wild-type GMPPB in fibroblasts from an affected individual partially restored glycosylation of α-DG. Whereas wild-type GMPPB localized to the cytoplasm, five of the identified missense mutations caused formation of aggregates in the cytoplasm or near membrane protrusions. Additionally, knockdown of the GMPPB ortholog in zebrafish caused structural muscle defects with decreased motility, eye abnormalities, and reduced glycosylation of α-DG. Together, these data indicate that GMPPB mutations are responsible for congenital and limb-girdle muscular dystrophies with hypoglycosylation of α-DG.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2013.05.009DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3710768PMC
July 2013
-->