Publications by authors named "Kemei Shi"

5 Publications

  • Page 1 of 1

Prevalence of Echinococcus Species in Wild Foxes and Stray Dogs in Qinghai Province, China.

Am J Trop Med Hyg 2021 Nov 15. Epub 2021 Nov 15.

National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China.

Echinococcosis is a zoonotic parasitic disease that is highly endemic to the Qinghai province of China. Limited data are available on the prevalence of the causal pathogen, Echinococcus spp., in definitive hosts in this region. Thus, the aim of this study was to evaluate the prevalence of Echinococcus spp. in wild foxes and stray dogs in Qinghai province. Five hundred and twenty-eight feces from wild foxes and 277 from stray dogs were collected from 11 counties in the Golog, Yushu, and Haixi prefectures and screened for Echinococcus spp. using copro-DNA polymerase chain reaction (PCR). In total, 5.5% of wild foxes and 15.2% of stray dogs tested positive for Echinococcus spp. The prevalence rates of Echinococcus spp. in wild foxes in Golog, Yushu, and Haixi were 7.3%, 5.2%, and 1.9%, respectively. In stray dogs, these rates were 13.3%, 17.3%, and 0%, respectively. Sequencing analysis determined that Echinococcus multilocularis was the most prevalent species, occurring in 4.0% and 12.6% of wild foxes and stray dogs, respectively. Echinococcus shiquicus was observed in 1.5% of wild foxes and 0.7% of stray dogs. Echinococcus granulosus was observed only in wild dogs, with a prevalence rate of 1.8%. To our knowledge, this is the first report on the prevalence of E. shiquicus in dogs in Qinghai province. The current results improve our understanding of the transmission and dissemination of human echinococcosis and suggest that exposure to the eggs of E. multilocularis harbored by wild foxes and stray dogs may pose a great risk of alveolar echinococcosis to humans in Qinghai province.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
November 2021

Ferroptosis is involved in the development of neuropathic pain and allodynia.

Mol Cell Biochem 2021 Aug 17;476(8):3149-3161. Epub 2021 Apr 17.

Pain Management Center, Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China.

Neuropathic pain (NP) is chronic, intractable, and typically not alleviated using analgesics. Ferroptosis is a new type of cell death characterized by mitochondrial damage, oxidative stress, and mitochondrial dysfunction, affecting specific types of synaptic plasticity in the spinal cord. Here, we evaluated the role of ferroptosis in NP using chronic contractile injury (CCI) in rats. The CCI and control groups were subjected to sciatic nerve ligation. The mechanical withdrawal threshold and thermal withdrawal reflex latency were used to detect changes in mechanical pain threshold and thermal pain threshold in rats, respectively. Notably, CCI caused mechanical and thermal stimulation of the injured hind paw, reduced levels of glutathione peroxidase 4 (GPX4), and increased acyl-CoA synthetase long-chain family member 4 (ACSL4). Treatment with the ferroptosis inhibitor ferrostatin-1 (10 mg/kg) 1 h after surgery upregulated GPX4 expression and downregulated ACSL4 expression, whereas the ferroptosis inducer, erastin (10 mg/kg), exerted opposite effects. Treatment with ferrostatin-1 upregulated NeuN expression and downregulated GPX4 expression, whereas erastin reversed these effects. CCI increased the number of damaged mitochondria and decreased the mean planar mitochondrial area, and treatment with erastin further exacerbated these effects. The iron ion content in the spinal cords of CCI-induced rats increased. Treatment with ferrostatin-1 decreased, whereas treatment with erastin increased iron ion content in the CCI-induced rat model. Taken together, our results showed that ferroptosis is involved in the development of NP in male rats by blocking neuron and astrocyte activation in the spinal dorsal horn.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
August 2021

The correlations between Th1 and Th2 cytokines in human alveolar echinococcosis.

BMC Infect Dis 2020 Jun 15;20(1):414. Epub 2020 Jun 15.

Qinghai Institute for Endemic Disease Prevention and Control, Xining, 811602, Qinghai Province, China.

Background: Alveolar echinococcosis (AE) is a zoonotic parasitic disease caused by Echinococcus multilocularis larval tapeworm infections in humans that severely impairs the health of affected patients in the northern hemisphere.

Methods: The expression levels of 20 cytokines associated with AE infection were measured by enzyme-linked immunosorbent assay, and the correlations between these cytokines were analysed in the R programming language.

Results: Serum cytokine levels differed among individuals in both the AE patient and healthy control groups. The results of the correlations among the cytokines showed obvious differences between the two groups. In the AE patients group, Th1 and Th2 cytokines formed a more complicated network than that in the healthy control group.

Conclusions: The altered correlations between Th1 and Th2 cytokines may be closely associated with AE infection, which may provide a new explanation for the essential differences between AE patients and healthy individuals.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
June 2020

Hydrogen-Rich Saline Activated Autophagy via HIF-1 Pathways in Neuropathic Pain Model.

Biomed Res Int 2018 17;2018:4670834. Epub 2018 May 17.

Pain Management Center, Second Hospital of Tianjin Medical University, Tianjin 300211, China.

Background: Neuropathic pain is a chronic and intractable pain, with very few effective analgesics. It involves an impaired cell autophagy process. Hydrogen-rich saline (HRS) reportedly reduces allodynia and hyperalgesia in a neuropathic pain model; however, it is unknown whether these effects involve autophagy induction.

Methods: We investigated the relationship between HRS and cell autophagy in a neuropathic pain model generated by chronic constriction injury (CCI) in Sprague-Dawley rats. Rats received an intraperitoneal injection of HRS (10 mL/kg daily, from 1 day before until 14 days after CCI), 3MA (autophagy inhibitor), 2ME2 (HIF-1 inhibitor), or EDHB (HIF-1 agonist). The mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were tested 1 day before and 1, 3, 7, 10, and 14 days after the operation. HIF-1 and cell autophagy markers in the spinal cord were evaluated by western blotting and real-time PCR assays at 14 days after CCI. Autophagosomes with double membranes were identified by transmission electron microscopy.

Results: CCI caused behavioral hypersensitivity to mechanical and thermal stimulation in the hind-paw of the injured side. HRS improved MWT and TWL, activated autophagy, and increased autophagosomes and autolysosomes in CCI rats. 3-MA aggravated hyperalgesia and allodynia and suppressed autophagy, while EDHB attenuated hyperalgesia and activated the autophagy procedure and the HIF-1 downstream target gene BNIP3. HIF-1 inhibitors reversed the regulatory effects of HRS on autophagy in CCI rats at 14 days after spinal cord injury.

Conclusion: HRS reduced mechanical hyperalgesia and activation of cell autophagy in neuropathic pain through a HIF1-dependent pathway.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
October 2018

Preparation of a multifunctional verapamil-loaded nano-carrier based on a self-assembling PEGylated prodrug.

Colloids Surf B Biointerfaces 2015 Nov 21;135:682-688. Epub 2015 Aug 21.

Key Laboratory of Functional Polymer Materials of MOE, Institute of Polymers, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, PR China. Electronic address:

In an effort to prove the inherent side effects of doxorubicin (DOX) and potentially revoke the effects of drug resistance exhibited by cancer cells, we have designed a multifunctional DOX-delivery nano-carrier system able to encapsulate the drug resistance reversal agent Verapamil HCl (VRP·HCl). Hydrophilic short-chain polyethylene glycol (i.e., mPEG) was covalently linked to hydrophobic DOX and a benzoic imine linkage was used to form a linear amphiphilic PEGylated prodrug, namely mPEG-b-DOX. In aqueous solution, the amphiphilic PEG-b-DOX is able to self-assemble to form stable nanoparticles with a DOX loading content of approximately 40 wt% and a diameter of ∼ 143 nm. The resulting nanoparticles can simultaneously serve as an anticancer drug conjugate and as a drug carrier system. Here, the hydrophilic VRP could be encapsulated into the nano-carriers via a conventional dialysis method. The loading efficiency in mPEG-b-DOX nano-carrier was determined to be 53.97% and the loading content was found to be 7.71 wt%. The VRP-loaded nano-carriers grew slightly in size, to a diameter of ∼ 177 nm. We found that the release of DOX and VRP was much faster at a lower pH value. The biological activity of the nano-carriers were evaluated in vitro and compared with the DOX-loaded system. In doing so we found that the VRP-loaded nano-carrier features a much higher antitumor activity. Furthermore, the combined-system exhibits a significantly enhanced cytotoxicity with an elevated apoptosis rate observed for MCF-7/ADR used as a cell line in this in vitro study. This combinatory system and promising candidate for applications involving DOX chemotherapy proved to be easy to prepare and could be characterized in terms of biocompatibility, biodegradability, loading capacity, pH responsiveness and reversal of drug resistance.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
November 2015