Publications by authors named "Keiji Tanigaki"

14 Publications

  • Page 1 of 1

Supplementation With the Sialic Acid Precursor N-Acetyl-D-Mannosamine Breaks the Link Between Obesity and Hypertension.

Circulation 2019 12 10;140(24):2005-2018. Epub 2019 Oct 10.

University of Texas Southwestern Medical Center, Dallas (J.P., W.V., S.B., I.S.Y., K.T., A.S., H.C., N.C.S., A.R., K.L.C., C.M., P.W.S.).

Background: Obesity-related hypertension is a common disorder, and attempts to combat the underlying obesity are often unsuccessful. We previously revealed that mice globally deficient in the inhibitory immunoglobulin G (IgG) receptor FcγRIIB are protected from obesity-induced hypertension. However, how FcγRIIB participates is unknown. Studies were designed to determine if alterations in IgG contribute to the pathogenesis of obesity-induced hypertension.

Methods: Involvement of IgG was studied using IgG μ heavy chain-null mice deficient in mature B cells and by IgG transfer. Participation of FcγRIIB was interrogated in mice with global or endothelial cell-specific deletion of the receptor. Obesity was induced by high-fat diet (HFD), and blood pressure (BP) was measured by radiotelemetry or tail cuff. The relative sialylation of the Fc glycan on mouse IgG, which influences IgG activation of Fc receptors, was evaluated by lectin blotting. Effects of IgG on endothelial NO synthase were assessed in human aortic endothelial cells. IgG Fc glycan sialylation was interrogated in 3442 human participants by mass spectrometry, and the relationship between sialylation and BP was evaluated. Effects of normalizing IgG sialylation were determined in HFD-fed mice administered the sialic acid precursor N-acetyl-D-mannosamine (ManNAc).

Results: Mice deficient in B cells were protected from obesity-induced hypertension. Compared with IgG from control chow-fed mice, IgG from HFD-fed mice was hyposialylated, and it raised BP when transferred to recipients lacking IgG; the hypertensive response was absent if recipients were FcγRIIB-deficient. Neuraminidase-treated IgG lacking the Fc glycan terminal sialic acid also raised BP. In cultured endothelial cells, via FcγRIIB, IgG from HFD-fed mice and neuraminidase-treated IgG inhibited vascular endothelial growth factor activation of endothelial NO synthase by altering endothelial NO synthase phosphorylation. In humans, obesity was associated with lower IgG sialylation, and systolic BP was inversely related to IgG sialylation. Mice deficient in FcγRIIB in endothelium were protected from obesity-induced hypertension. Furthermore, in HFD-fed mice, ManNAc normalized IgG sialylation and prevented obesity-induced hypertension.

Conclusions: Hyposialylated IgG and FcγRIIB in endothelium are critically involved in obesity-induced hypertension in mice, and supportive evidence was obtained in humans. Interventions targeting these mechanisms, such as ManNAc supplementation, may provide novel means to break the link between obesity and hypertension.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCULATIONAHA.119.043490DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7027951PMC
December 2019

Hyposialylated IgG activates endothelial IgG receptor FcγRIIB to promote obesity-induced insulin resistance.

J Clin Invest 2018 01 27;128(1):309-322. Epub 2017 Nov 27.

Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.

Type 2 diabetes mellitus (T2DM) is a common complication of obesity. Here, we have shown that activation of the IgG receptor FcγRIIB in endothelium by hyposialylated IgG plays an important role in obesity-induced insulin resistance. Despite becoming obese on a high-fat diet (HFD), mice lacking FcγRIIB globally or selectively in endothelium were protected from insulin resistance as a result of the preservation of insulin delivery to skeletal muscle and resulting maintenance of muscle glucose disposal. IgG transfer in IgG-deficient mice implicated IgG as the pathogenetic ligand for endothelial FcγRIIB in obesity-induced insulin resistance. Moreover, IgG transferred from patients with T2DM but not from metabolically healthy subjects caused insulin resistance in IgG-deficient mice via FcγRIIB, indicating that similar processes may be operative in T2DM in humans. Mechanistically, the activation of FcγRIIB by IgG from obese mice impaired endothelial cell insulin transcytosis in culture and in vivo. These effects were attributed to hyposialylation of the Fc glycan, and IgG from T2DM patients was also hyposialylated. In HFD-fed mice, supplementation with the sialic acid precursor N-acetyl-D-mannosamine restored IgG sialylation and preserved insulin sensitivity without affecting weight gain. Thus, IgG sialylation and endothelial FcγRIIB may represent promising therapeutic targets to sever the link between obesity and T2DM.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1172/JCI89333DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5749535PMC
January 2018

Endothelial Fcγ Receptor IIB Activation Blunts Insulin Delivery to Skeletal Muscle to Cause Insulin Resistance in Mice.

Diabetes 2016 07 26;65(7):1996-2005. Epub 2016 Apr 26.

Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX

Modest elevations in C-reactive protein (CRP) are associated with type 2 diabetes. We previously revealed in mice that increased CRP causes insulin resistance and mice globally deficient in the CRP receptor Fcγ receptor IIB (FcγRIIB) were protected from the disorder. FcγRIIB is expressed in numerous cell types including endothelium and B lymphocytes. Here we investigated how endothelial FcγRIIB influences glucose homeostasis, using mice with elevated CRP expressing or lacking endothelial FcγRIIB. Whereas increased CRP caused insulin resistance in mice expressing endothelial FcγRIIB, mice deficient in the endothelial receptor were protected. The insulin resistance with endothelial FcγRIIB activation was due to impaired skeletal muscle glucose uptake caused by attenuated insulin delivery, and it was associated with blunted endothelial nitric oxide synthase (eNOS) activation in skeletal muscle. In culture, CRP suppressed endothelial cell insulin transcytosis via FcγRIIB activation and eNOS antagonism. Furthermore, in knock-in mice harboring constitutively active eNOS, elevated CRP did not invoke insulin resistance. Collectively these findings reveal that by inhibiting eNOS, endothelial FcγRIIB activation by CRP blunts insulin delivery to skeletal muscle to cause insulin resistance. Thus, a series of mechanisms in endothelium that impairs insulin movement has been identified that may contribute to type 2 diabetes pathogenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2337/db15-1605DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4915578PMC
July 2016

Rasip1 is essential to blood vessel stability and angiogenic blood vessel growth.

Angiogenesis 2016 Apr 20;19(2):173-90. Epub 2016 Feb 20.

Department of Molecular Biology and Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., NA8.300, Dallas, TX, 75390, USA.

Cardiovascular function depends on patent, continuous and stable blood vessel formation by endothelial cells (ECs). Blood vessel development initiates by vasculogenesis, as ECs coalesce into linear aggregates and organize to form central lumens that allow blood flow. Molecular mechanisms underlying in vivo vascular 'tubulogenesis' are only beginning to be unraveled. We previously showed that the GTPase-interacting protein called Rasip1 is required for the formation of continuous vascular lumens in the early embryo. Rasip1(-/-) ECs exhibit loss of proper cell polarity and cell shape, disrupted localization of EC-EC junctions and defects in adhesion of ECs to extracellular matrix. In vitro studies showed that Rasip1 depletion in cultured ECs blocked tubulogenesis. Whether Rasip1 is required in blood vessels after their initial formation remained unclear. Here, we show that Rasip1 is essential for vessel formation and maintenance in the embryo, but not in quiescent adult vessels. Rasip1 is also required for angiogenesis in three models of blood vessel growth: in vitro matrix invasion, retinal blood vessel growth and directed in vivo angiogenesis assays. Rasip1 is thus necessary in growing embryonic blood vessels, postnatal angiogenic sprouting and remodeling, but is dispensable for maintenance of established blood vessels, making it a potential anti-angiogenic therapeutic target.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10456-016-9498-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4808411PMC
April 2016

Fcγ receptors and ligands and cardiovascular disease.

Circ Res 2015 Jan;116(2):368-84

From the Department of Pediatrics, Center for Pulmonary and Vascular Biology (K.T., N.S., C.M., P.W.S.), and Division of Cardiology, Department of Internal Medicine (A.K., W.V.), University of Texas Southwestern Medical Center, Dallas.

Fcγ receptors (FcγRs) classically modulate intracellular signaling on binding of the Fc region of IgG in immune response cells. How FcγR and their ligands affect cardiovascular health and disease has been interrogated recently in both preclinical and clinical studies. The stimulation of activating FcγR in endothelial cells, vascular smooth muscle cells, and monocytes/macrophages causes a variety of cellular responses that may contribute to vascular disease pathogenesis. Stimulation of the lone inhibitory FγcR, FcγRIIB, also has adverse consequences in endothelial cells, antagonizing NO production and reparative mechanisms. In preclinical disease models, activating FcγRs promote atherosclerosis, whereas FcγRIIB is protective, and activating FcγRs also enhance thrombotic and nonthrombotic vascular occlusion. The FcγR ligand C-reactive protein (CRP) has undergone intense study. Although in rodents CRP does not affect atherosclerosis, it causes hypertension and insulin resistance and worsens myocardial infarction. Massive data have accumulated indicating an association between increases in circulating CRP and coronary heart disease in humans. However, Mendelian randomization studies reveal that CRP is not likely a disease mediator. CRP genetics and hypertension warrant further investigation. To date, studies of genetic variants of activating FcγRs are insufficient to implicate the receptors in coronary heart disease pathogenesis in humans. However, a link between FcγRIIB and human hypertension may be emerging. Further knowledge of the vascular biology of FcγR and their ligands will potentially enhance our understanding of cardiovascular disorders, particularly in patients whose greater predisposition for disease is not explained by traditional risk factors, such as individuals with autoimmune disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCRESAHA.116.302795DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4331353PMC
January 2015

IgG receptor FcγRIIB plays a key role in obesity-induced hypertension.

Hypertension 2015 Feb 3;65(2):456-62. Epub 2014 Nov 3.

From the Department of Pediatrics, Section of Neonatology, Baylor College of Medicine, Houston, TX (N.C.S., B.-M.D.B.); and Department of Internal Medicine, Division of Cardiology, Hypertension Section (W.V.) and Department of Pediatrics, Center for Pulmonary and Vascular Biology (K.T., I.S.Y., K.L.C., C.M., P.W.S.), University of Texas Southwestern Medical Center, Dallas.

There is a well-recognized association between obesity, inflammation, and hypertension. Why obesity causes hypertension is poorly understood. We previously demonstrated using a C-reactive protein (CRP) transgenic mouse that CRP induces hypertension that is related to NO deficiency. Our prior work in cultured endothelial cells identified the Fcγ receptor IIB (FcγRIIB) as the receptor for CRP whereby it antagonizes endothelial NO synthase. Recognizing known associations between CRP and obesity and hypertension in humans, in the present study we tested the hypothesis that FcγRIIB plays a role in obesity-induced hypertension in mice. Using radiotelemetry, we first demonstrated that the hypertension observed in transgenic mouse-CRP is mediated by the receptor, indicating that FcγRIIB is capable of modifying blood pressure. We then discovered in a model of diet-induced obesity yielding equal adiposity in all study groups that whereas FcγRIIB(+/+) mice developed obesity-induced hypertension, FcγRIIB(-/-) mice were fully protected. Levels of CRP, the related pentraxin serum amyloid P component which is the CRP-equivalent in mice, and total IgG were unaltered by diet-induced obesity; FcγRIIB expression in endothelium was also unchanged. However, whereas IgG isolated from chow-fed mice had no effect, IgG from high-fat diet-fed mice inhibited endothelial NO synthase in cultured endothelial cells, and this was an FcγRIIB-dependent process. Thus, we have identified a novel role for FcγRIIB in the pathogenesis of obesity-induced hypertension, independent of processes regulating adiposity, and it may entail an IgG-induced attenuation of endothelial NO synthase function. Approaches targeting FcγRIIB may potentially offer new means to treat hypertension in obese individuals.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/HYPERTENSIONAHA.114.04670DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4419357PMC
February 2015

Bazedoxifene and conjugated estrogen prevent diet-induced obesity, hepatic steatosis, and type 2 diabetes in mice without impacting the reproductive tract.

Am J Physiol Endocrinol Metab 2014 Aug 17;307(3):E345-54. Epub 2014 Jun 17.

Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas; and

Despite the capacity of estrogens to favorably regulate body composition and glucose homeostasis, their use to combat obesity and type 2 diabetes is not feasible, because they promote sex steroid-responsive cancers. The novel selective estrogen receptor modulator (SERM) bazedoxifene acetate (BZA) uniquely antagonizes both breast cancer development and estrogen-related changes in the female reproductive tract. How BZA administered with conjugated estrogen (CE) or alone impacts metabolism is unknown. The effects of BZA or CE + BZA on body composition and glucose homeostasis were determined in ovariectomized female mice fed a Western diet for 10-12 wk. In contrast to vehicle, estradiol (E₂), CE, BZA, and CE + BZA equally prevented body weight gain by 50%. In parallel, all treatments caused equal attenuation of the increase in body fat mass invoked by the diet as well as the increases in subcutaneous and visceral white adipose tissue. Diet-induced hepatic steatosis was attenuated by E₂ or CE, and BZA alone or with CE provided even greater steatosis prevention; all interventions improved pyruvate tolerance tests. Glucose tolerance tests and HOMA-IR were improved by E₂, CE, and CE + BZA. Whereas E₂ or CE alone invoked a uterotrophic response, BZA alone or CE + BZA had negligible impact on the uterus. Thus, CE + BZA affords protection from diet-induced adiposity, hepatic steatosis, and insulin resistance with minimal impact on the female reproductive tract in mice. These combined agents may provide a valuable new means to favorably regulate body composition and glucose homeostasis and combat fatty liver.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpendo.00653.2013DOI Listing
August 2014

C-reactive protein causes insulin resistance in mice through Fcγ receptor IIB-mediated inhibition of skeletal muscle glucose delivery.

Diabetes 2013 Mar 15;62(3):721-31. Epub 2012 Oct 15.

Division of Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.

Elevations in C-reactive protein (CRP) are associated with an increased risk of insulin resistance. Whether CRP plays a causal role is unknown. Here we show that CRP transgenic mice and wild-type mice administered recombinant CRP are insulin resistant. Mice lacking the inhibitory Fcγ receptor IIB (FcγRIIB) are protected from CRP-induced insulin resistance, and immunohistochemistry reveals that FcγRIIB is expressed in skeletal muscle microvascular endothelium and is absent in skeletal muscle myocytes, adipocytes, and hepatocytes. The primary mechanism in glucose homeostasis disrupted by CRP is skeletal muscle glucose delivery, and CRP attenuates insulin-induced skeletal muscle blood flow. CRP does not impair skeletal muscle glucose delivery in FcγRIIB(-/-) mice or in endothelial nitric oxide synthase knock-in mice with phosphomimetic modification of Ser1176, which is normally phosphorylated by insulin signaling to stimulate nitric oxide-mediated skeletal muscle blood flow and glucose delivery and is dephosphorylated by CRP/FcγRIIB. Thus, CRP causes insulin resistance in mice through FcγRIIB-mediated inhibition of skeletal muscle glucose delivery.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2337/db12-0133DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3581204PMC
March 2013

Scavenger receptor class B type I is a plasma membrane cholesterol sensor.

Circ Res 2013 Jan 28;112(1):140-51. Epub 2012 Sep 28.

Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA.

Rationale: Signal initiation by the high-density lipoprotein (HDL) receptor scavenger receptor class B, type I (SR-BI), which is important to actions of HDL on endothelium and other processes, requires cholesterol efflux and the C-terminal transmembrane domain. The C-terminal transmembrane domain uniquely interacts with plasma membrane (PM) cholesterol.

Objective: The molecular basis and functional significance of SR-BI interaction with PM cholesterol are unknown. We tested the hypotheses that the interaction is required for SR-BI signaling, and that it enables SR-BI to serve as a PM cholesterol sensor.

Methods And Results: In studies performed in COS-M6 cells, mutation of a highly conserved C-terminal transmembrane domain glutamine to alanine (SR-BI-Q445A) decreased PM cholesterol interaction with the receptor by 71% without altering HDL binding or cholesterol uptake or efflux, and it yielded a receptor incapable of HDL-induced signaling. Signaling prompted by cholesterol efflux to methyl-β-cyclodextrin also was prevented, indicating that PM cholesterol interaction with the receptor enables it to serve as a PM cholesterol sensor. Using SR-BI-Q445A, we further demonstrated that PM cholesterol sensing by SR-BI does not influence SR-BI-mediated reverse cholesterol transport to the liver in mice. However, the PM cholesterol sensing does underlie apolipoprotein B intracellular trafficking in response to postprandial micelles or methyl-β-cyclodextrin in cultured enterocytes, and it is required for HDL activation of endothelial NO synthase and migration in cultured endothelial cells and HDL-induced angiogenesis in vivo.

Conclusions: Through interaction with PM cholesterol, SR-BI serves as a PM cholesterol sensor, and the resulting intracellular signaling governs processes in both enterocytes and endothelial cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCRESAHA.112.280081DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3564583PMC
January 2013

Coupling of Fcγ receptor I to Fcγ receptor IIb by SRC kinase mediates C-reactive protein impairment of endothelial function.

Circ Res 2011 Oct 22;109(10):1132-40. Epub 2011 Sep 22.

Division of Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.

Rationale: Elevations in C-reactive protein (CRP) are associated with increased cardiovascular disease risk and endothelial dysfunction. CRP antagonizes endothelial nitric oxide synthase (eNOS) through processes mediated by the IgG receptor Fcγ receptor IIB (FcγRIIB), its immunoreceptor tyrosine-based inhibitory motif, and SH2 domain-containing inositol 5'-phosphatase 1. In mice, CRP actions on eNOS blunt carotid artery re-endothelialization.

Objective: How CRP activates FcγRIIB in endothelium is not known. We determined the role of Fcγ receptor I (FcγRI) and the basis for coupling of FcγRI to FcγRIIB in endothelium.

Methods And Results: In cultured endothelial cells, FcγRI-blocking antibodies prevented CRP antagonism of eNOS, and CRP activated Src via FcγRI. CRP-induced increases in FcγRIIB immunoreceptor tyrosine-based inhibitory motif phosphorylation and SH2 domain-containing inositol 5'-phosphatase 1 activation were Src-dependent, and Src inhibition prevented eNOS antagonism by CRP. Similar processes mediated eNOS antagonism by aggregated IgG used to mimic immune complex. Carotid artery re-endothelialization was evaluated in offspring from crosses of CRP transgenic mice (TG-CRP) with either mice lacking the γ subunit of FcγRI (FcRγ(-/-)) or FcγRIIB(-/-) mice. Whereas re-endothelialization was impaired in TG-CRP vs wild-type, it was normal in both FcRγ(-/-); TG-CRP and FcγRIIB(-/-); TG-CRP mice.

Conclusions: CRP antagonism of eNOS is mediated by the coupling of FcγRI to FcγRIIB by Src kinase and resulting activation of SH2 domain-containing inositol 5'-phosphatase 1, and consistent with this mechanism, both FcγRI and FcγRIIB are required for CRP to blunt endothelial repair in vivo. Similar mechanisms underlie eNOS antagonism by immune complex. FcγRI and FcγRIIB may be novel therapeutic targets for preventing endothelial dysfunction in inflammatory or immune complex-mediated conditions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCRESAHA.111.254573DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3215097PMC
October 2011

C-reactive protein inhibits insulin activation of endothelial nitric oxide synthase via the immunoreceptor tyrosine-based inhibition motif of FcgammaRIIB and SHIP-1.

Circ Res 2009 Jun 7;104(11):1275-82. Epub 2009 May 7.

Division of Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.

Insulin promotes the cardiovascular protective functions of the endothelium including NO production by endothelial NO synthase (eNOS), which it stimulates via Akt kinase which phosphorylates eNOS Ser1179. C-reactive protein (CRP) is an acute-phase reactant that is positively correlated with cardiovascular disease risk in patients with type 2 diabetes. We previously showed that CRP inhibits eNOS activation by insulin by blunting Ser1179 phosphorylation. We now elucidate the underlying molecular mechanisms. We first show in mice that CRP inhibits insulin-induced eNOS phosphorylation, indicating that these processes are operative in vivo. In endothelial cells we find that CRP attenuates insulin-induced Akt phosphorylation, and CRP antagonism of eNOS is negated by expression of constitutively active Akt; the inhibitory effect of CRP on Akt is also observed in vivo. A requirement for the IgG receptor FcgammaRIIB was demonstrated in vitro using blocking antibody, and reconstitution experiments with wild-type and mutant FcgammaRIIB in NIH3T3IR cells revealed that these processes require the ITIM (immunoreceptor tyrosine-based inhibition motif) of the receptor. Furthermore, we find that endothelium express SHIP-1 (Src homology 2 domain-containing inositol 5'-phosphatase 1), that CRP induces SHIP-1 stimulatory phosphorylation in endothelium in culture and in vivo, and that SHIP-1 knockdown by small interfering RNA prevents CRP antagonism of insulin-induced eNOS activation. Thus, CRP inhibits eNOS stimulation by insulin via FcgammaRIIB and its ITIM, SHIP-1 activation, and resulting blunted activation of Akt. These findings provide mechanistic linkage among CRP, impaired insulin signaling in endothelium, and greater cardiovascular disease risk in type 2 diabetes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCRESAHA.108.192906DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2733870PMC
June 2009

Different roles of proteolipids and 70-kDa subunits of V-ATPase in growth and death of cultured human cells.

Genes Cells 2003 Jun;8(6):501-13

Department of Dynamic Physiology, Graduate School of Natural Science and Technology, Ishikawa 920-0934, Japan.

Background: The vacuolar-type proton-translocating adenosine triphosphatase (V-ATPase) plays important roles in cell growth and tumour progression. V-ATPase is composed of two distinct structures, a hydrophilic catalytic cytosolic sector (V(1)) and a hydrophobic transmembrane sector (V(0)). The V(1) sector is composed of 5-8 different subunits with the structure A(3)B(3)C(1)D(1)E(1)F(1)G(1)H(1). The V0 sector is composed of 5 different subunits with the structure 1161381191166. The over-expression of 16-kDa proteolipid subunit of V-ATPase in the perinuclear region of the human adventitial fibroblasts promotes phenotypic modulation that contributes to neointimal formation and medial thickening. A relationship between oncogenicity and the expression of the 16-kDa proteolipid has also been suggested in human pancreatic carcinoma tissue.

Results: We found that the mRNA levels of the 16-kDa proteolipid but not of the 70-kDa subunit of V-ATPase in human myofibroblasts were more abundant in serum-containing medium (MF(+) cells) than serum-free medium (MF(-) cells). In HeLa cells, the levels of mRNA and protein of the 16-kDa, 21-kDa or 70-kDa were clearly suppressed when the corresponding anti-sense oligonucleotides were administered to the culture medium. The growth rate and viability (mostly due to necrosis) of HeLa cells were reduced markedly by the 16-kDa and 21-kDa anti-sense, but little by the 70-kDa anti-sense, and not at all by any sense oligonucleotides. The localization of 16-kDa/21-kDa proteolipid subunits was different from that of the 70-kDa subunit in HeLa cells.

Conclusion: These results suggest that the 16-kDa and 21-kDa proteolipid subunits of the V0 sector play crucial roles in growth and death of cultured human cells. Our results may provide new insights into the mechanism and therapeutic implications for vessel wall hyperplasia and tumorigenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1365-2443.2003.00651.xDOI Listing
June 2003

In bafilomycin A1-resistant cells, bafilomycin A1 raised lysosomal pH and both prodigiosins and concanamycin A inhibited growth through apoptosis.

FEBS Lett 2003 Feb;537(1-3):79-84

Department of Dynamic Physiology, Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Takara-machi 13-1, Ishikawa 920-0934, Japan.

In bafilomycin A(1)-resistant cells (Vero-317 and MC-3T3-E1), bafilomycin A(1) neither inhibited cell growth, induced cell death, nor activated caspase-3. However, 100 nM bafilomycin A(1) did raise the lysosomal pH similar to 10 mM NH(4)Cl. Prodigiosins, H(+)/Cl(-) symporters that raise the lysosomal pH, inhibited cell growth through apoptosis and caused the activation of caspase-3. Concanamycin A also inhibited the growth of these cells through apoptosis. 10 mM NH(4)Cl inhibited the growth of these cells as well, but cytostatically. These results suggest that plecomacrolides inhibited cell growth apoptotically through specific site(s), in contrast to the cytostatic effect of 10 mM NH(4)Cl, besides raising the lysosomal pH.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0014-5793(03)00084-xDOI Listing
February 2003

BE-18591 as a new H(+)/Cl(-) symport ionophore that inhibits immunoproliferation and gastritis.

FEBS Lett 2002 Jul;524(1-3):37-42

Laboratory of Biochemistry and Molecular Cell Biology, Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, Kanazawa University, Takara-machi 13-1, Kanazawa, Ishikawa, Japan.

In our previous papers [e.g. Sato et al., J. Biol. Chem. 273 (1998) 21455-21462], we have shown that prodigiosins can uncouple various H(+)-ATPases through their H(+)/Cl(-) symport activity. BE-18591 is an enamine of 4-methoxy-2,2'-bipyrrole-5-carboxyaldehyde (tambjamine group antibiotics) which resembles the prodigiosins. We found that BE-18591 was a new group of antibiotics that uncouples various H(+)-ATPases: it inhibited proton pump activities with IC(50)s of about 1-2 nM (about 20 pmol/mg protein) for submitochondrial particles as well as gastric vesicles and of 230 nM (about 230 pmol/mg protein) for lysosomes, but it had little effect on their ATP hydrolyses (up to 10 microM), a property of H(+)/Cl(-) symport activity. At low concentrations (<1 microM), BE-18591 inhibited immunoproliferation, the IC(50) of lipopolysaccharide-stimulated mouse splenocytes was 38 nM, that of Concanavalin A-stimulated cells was 230 nM. Gastritis of rabbits was also inhibited. At higher concentrations (>1 microM), BE-18591 induced neurite outgrowth (15% induction in 48 h at 4 microM), inhibited bone resorption (approximately 35% in 48 h at 10 microM) and caused cell death (approximately 30% in 48 h at 4 microM) but with little apoptosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0014-5793(02)02996-4DOI Listing
July 2002