Publications by authors named "Katrina Diener"

6 Publications

  • Page 1 of 1

GNAI1 and GNAI3 Reduce Colitis-Associated Tumorigenesis in Mice by Blocking IL6 Signaling and Down-regulating Expression of GNAI2.

Gastroenterology 2019 06 2;156(8):2297-2312. Epub 2019 Mar 2.

Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii.

Background & Aims: Interleukin 6 (IL6) and tumor necrosis factor contribute to the development of colitis-associated cancer (CAC). We investigated these signaling pathways and the involvement of G protein subunit alpha i1 (GNAI1), GNAI2, and GNAI3 in the development of CAC in mice and humans.

Methods: B6;129 wild-type (control) or mice with disruption of Gnai1, Gnai2, and/or Gnai3 or conditional disruption of Gnai2 in CD11c or epithelial cells were given dextran sulfate sodium (DSS) to induce colitis followed by azoxymethane (AOM) to induce carcinogenesis; some mice were given an antibody against IL6. Feces were collected from mice, and the compositions of microbiomes were analyzed by polymerase chain reactions. Dendritic cells (DCs) and myeloid-derived suppressor cells (MDSCs) isolated from spleen and colon tissues were analyzed by flow cytometry. We performed immunoprecipitation and immunoblot analyses of colon tumor tissues, MDSCs, and mouse embryonic fibroblasts to study the expression levels of GNAI1, GNAI2, and GNAI3 and the interactions of GNAI1 and GNAI3 with proteins in the IL6 signaling pathway. We analyzed the expression of Gnai2 messenger RNA by CD11c cells in the colonic lamina propria by PrimeFlow, expression of IL6 in DCs by flow cytometry, and secretion of cytokines in sera and colon tissues by enzyme-linked immunosorbent assay. We obtained colon tumor and matched nontumor tissues from 83 patients with colorectal cancer having surgery in China and 35 patients with CAC in the United States. Mouse and human colon tissues were analyzed by histology, immunoblot, immunohistochemistry, and/or RNA-sequencing analyses.

Results: GNAI1 and GNAI3 (GNAI1;3) double-knockout (DKO) mice developed more severe colitis after administration of DSS and significantly more colonic tumors than control mice after administration of AOM plus DSS. Development of increased tumors in DKO mice was not associated with changes in fecal microbiomes but was associated with activation of nuclear factor (NF) κB and signal transducer and activator of transcription (STAT) 3; increased levels of GNAI2, nitric oxide synthase 2, and IL6; increased numbers of CD4 DCs and MDSCs; and decreased numbers of CD8 DCs. IL6 was mainly produced by CD4/CD11b, but not CD8, DCs in DKO mice. Injection of DKO mice with a blocking antibody against IL6 reduced the expansion of MDSCs and the number of tumors that developed after CAC induction. Incubation of MDSCs or mouse embryonic fibroblasts with IL6 induced activation of either NF-κB by a JAK2-TRAF6-TAK1-CHUK/IKKB signaling pathway or STAT3 by JAK2. This activation resulted in expression of GNAI2, IL6 signal transducer (IL6ST, also called GP130) and nitric oxide synthase 2, and expansion of MDSCs; the expression levels of these proteins and expansion of MDSCs were further increased by the absence of GNAI1;3 in cells and mice. Conditional disruption of Gnai2 in CD11c cells of DKO mice prevented activation of NF-κB and STAT3 and changes in numbers of DCs and MDSCs. Colon tumor tissues from patients with CAC had reduced levels of GNAI1 and GNAI3 and increased levels of GNAI2 compared with normal tissues. Further analysis of a public human colorectal tumor DNA microarray database (GSE39582) showed that low Gani1 and Gnai3 messenger RNA expression and high Gnai2 messenger RNA expression were significantly associated with decreased relapse-free survival.

Conclusions: GNAI1;3 suppresses DSS-plus-AOM-induced colon tumor development in mice, whereas expression of GNAI2 in CD11c cells and IL6 in CD4/CD11b DCs appears to promote these effects. Strategies to induce GNAI1;3, or block GNAI2 and IL6, might be developed for the prevention or therapy of CAC in patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1053/j.gastro.2019.02.040DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6628260PMC
June 2019

Unexpected effects of different genetic backgrounds on identification of genomic rearrangements via whole-genome next generation sequencing.

BMC Genomics 2016 10 21;17(1):823. Epub 2016 Oct 21.

Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, 12800 E, 19th Ave, Mail Stop 8333, Aurora, CO, 80045, USA.

Background: Whole genome next generation sequencing (NGS) is increasingly employed to detect genomic rearrangements in cancer genomes, especially in lymphoid malignancies. We recently established a unique mouse model by specifically deleting a key non-homologous end-joining DNA repair gene, Xrcc4, and a cell cycle checkpoint gene, Trp53, in germinal center B cells. This mouse model spontaneously develops mature B cell lymphomas (termed G1XP lymphomas).

Results: Here, we attempt to employ whole genome NGS to identify novel structural rearrangements, in particular inter-chromosomal translocations (CTXs), in these G1XP lymphomas. We sequenced six lymphoma samples, aligned our NGS data with mouse reference genome (in C57BL/6J (B6) background) and identified CTXs using CREST algorithm. Surprisingly, we detected widespread CTXs in both lymphomas and wildtype control samples, majority of which were false positive and attributable to different genetic backgrounds. In addition, we validated our NGS pipeline by sequencing multiple control samples from distinct tissues of different genetic backgrounds of mouse (B6 vs non-B6). Lastly, our studies showed that widespread false positive CTXs can be generated by simply aligning sequences from different genetic backgrounds of mouse.

Conclusions: We conclude that mapping and alignment with reference genome might not be a preferred method for analyzing whole-genome NGS data obtained from a genetic background different from reference genome. Given the complex genetic background of different mouse strains or the heterogeneity of cancer genomes in human patients, in order to minimize such systematic artifacts and uncover novel CTXs, a preferred method might be de novo assembly of personalized normal control genome and cancer cell genome, instead of mapping and aligning NGS data to mouse or human reference genome. Thus, our studies have critical impact on the manner of data analysis for cancer genomics.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12864-016-3153-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5075209PMC
October 2016

Pre-mRNA splicing is facilitated by an optimal RNA polymerase II elongation rate.

Genes Dev 2014 Dec;28(23):2663-76

Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA;

Alternative splicing modulates expression of most human genes. The kinetic model of cotranscriptional splicing suggests that slow elongation expands and that fast elongation compresses the "window of opportunity" for recognition of upstream splice sites, thereby increasing or decreasing inclusion of alternative exons. We tested the model using RNA polymerase II mutants that change average elongation rates genome-wide. Slow and fast elongation affected constitutive and alternative splicing, frequently altering exon inclusion and intron retention in ways not predicted by the model. Cassette exons included by slow and excluded by fast elongation (type I) have weaker splice sites, shorter flanking introns, and distinct sequence motifs relative to "slow-excluded" and "fast-included" exons (type II). Many rate-sensitive exons are misspliced in tumors. Unexpectedly, slow and fast elongation often both increased or both decreased inclusion of a particular exon or retained intron. These results suggest that an optimal rate of transcriptional elongation is required for normal cotranscriptional pre-mRNA splicing.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/gad.252106.114DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4248296PMC
December 2014

Protective role of IL-6 in vascular remodeling in Schistosoma pulmonary hypertension.

Am J Respir Cell Mol Biol 2013 Dec;49(6):951-9

1 Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, and.

Schistosomiasis is one of the most common causes of pulmonary arterial hypertension worldwide, but the pathogenic mechanism by which the host inflammatory response contributes to vascular remodeling is unknown. We sought to identify signaling pathways that play protective or pathogenic roles in experimental Schistosoma-induced pulmonary vascular disease via whole-lung transcriptome analysis. Wild-type mice were experimentally exposed to Schistosoma mansoni ova by intraperitoneal sensitization followed by tail-vein augmentation, and the phenotype was assessed by right ventricular catheterization and tissue histology, as well as RNA and protein analysis. Whole-lung transcriptome analysis by microarray and RNA sequencing was performed, and RNA sequencing was analyzed according to two bioinformatics methods. Functional testing of the candidate IL-6 pathway was determined using IL-6 knockout mice and the signal transducers and activators of transcription protein-3 (STAT3) inhibitor S3I-201. Wild-type mice exposed to S. mansoni demonstrated increased right ventricular systolic pressure and thickness of the pulmonary vascular media. Whole-lung transcriptome analysis determined that the IL-6-STAT3-nuclear factor of activated T cells c2(NFATc2) pathway was up-regulated, as confirmed by PCR and the immunostaining of lung tissue from S. mansoni-exposed mice and patients who died of the disease. Mice lacking IL-6 or treated with S3I-201 developed pulmonary hypertension, associated with significant intima remodeling after exposure to S. mansoni. Whole-lung transcriptome analysis identified the up-regulation of the IL-6-STAT3-NFATc2 pathway, and IL-6 signaling was found to be protective against Schistosoma-induced intimal remodeling.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1165/rcmb.2012-0532OCDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3931110PMC
December 2013

Phage display of functional human TNF-alpha converting enzyme catalytic domain: a rapid method for the production of stabilized proteolytic proteins for assay development and high-throughput screening.

J Biomol Screen 2002 Oct;7(5):433-40

Department of Functional Genomics, Aventis Pharmaceuticals, Inc., Bridgewater, NJ, USA.

The catalytic domain of human tumor necrosis factor-alpha (TNF-alpha) converting enzyme (TACE) was expressed in a phage display system to determine whether stable and active enzyme could be made for high-throughput screening (HTS). This would address many issues around screening of proteases in this class. The phage-displayed TACE catalytic domain (PDT) properly cleaved the fusion protein of glutathione S-transferase (GST)-pro-TNF-alpha to generate the mature TNF-alpha in vitro. To determine the utility of the PDT in HTS, the authors further demonstrated that PDT was able to generate a strong reproducible fluorescence signal by cleaving a fluorogenic TNF-alpha-specific peptide in vitro. More important, the catalytic activity of the PDT was inhibited by a broad-spectrum matrix metalloprotease (MMP) inhibitor but not by an MMP-I specific inhibitor, illustrating the potential utility of PDT for HTS. The PDT was also compared with baculovirus-expressed TACE (BET) in these assays to establish the relative efficacy of PDT. Both PDT and BET showed a similar specific cleavage profile against the defined substrates. Activity of the BET, however, was stable at 4 degrees C for less than 24 h. In contrast, the PDT exhibited remarkable stability, losing very little activity even after 2 years at 4 degrees C. On the basis of these results, the authors concluded that the phage display system might be a useful tool for expressing proteins that have stability issues related to auto-proteolytic activity. Furthermore, the ease and low cost of large-scale production of phage should make it suitable for assay development and HTS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1177/108705702237675DOI Listing
October 2002

Differential gene expression in human cerebrovascular malformations.

Neurosurgery 2003 Feb;52(2):465-77; discussion 477-8

Center for Cellular and Molecular Neurosurgery, Department of Neurosurgery, University of Colorado Health Sciences Center, Denver, Colorado, USA.

Objective: We sought to identify genes with differential expression in cerebral cavernous malformations (CCMs), arteriovenous malformations (AVMs), and control superficial temporal arteries (STAs) and to confirm differential expression of genes previously implicated in the pathobiology of these lesions.

Methods: Total ribonucleic acid was isolated from four CCM, four AVM, and three STA surgical specimens and used to quantify lesion-specific messenger ribonucleic acid expression levels on human gene arrays. Data were analyzed with the use of two separate methodologies: gene discovery and confirmation analysis.

Results: The gene discovery method identified 42 genes that were significantly up-regulated and 36 genes that were significantly down-regulated in CCMs as compared with AVMs and STAs (P = 0.006). Similarly, 48 genes were significantly up-regulated and 59 genes were significantly down-regulated in AVMs as compared with CCMs and STAs (P = 0.006). The confirmation analysis showed significant differential expression (P < 0.05) in 11 of 15 genes (angiogenesis factors, receptors, and structural proteins) that previously had been reported to be expressed differentially in CCMs and AVMs in immunohistochemical analysis.

Conclusion: We identify numerous genes that are differentially expressed in CCMs and AVMs and correlate expression with the immunohistochemistry of genes implicated in cerebrovascular malformations. In future efforts, we will aim to confirm candidate genes specifically related to the pathobiology of cerebrovascular malformations and determine their biological systems and mechanistic relevance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2709524PMC
http://dx.doi.org/10.1227/01.neu.0000044131.03495.22DOI Listing
February 2003