Publications by authors named "Katrin Thüne"

18 Publications

  • Page 1 of 1

TREM2 expression in the brain and biological fluids in prion diseases.

Acta Neuropathol 2021 Jun 21;141(6):841-859. Epub 2021 Apr 21.

Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), L'Hospitalet de Llobregat, Spain.

Triggering receptor expressed on myeloid cells 2 (TREM2) is an innate immune cell surface receptor that regulates microglial function and is involved in the pathophysiology of several neurodegenerative diseases. Its soluble form (sTREM2) results from shedding of the TREM2 ectodomain. The role of TREM2 in prion diseases, a group of rapidly progressive dementias remains to be elucidated. In the present study, we analysed the expression of TREM2 and its main sheddase ADAM10 in the brain of sporadic Creutzfeldt-Jakob disease (sCJD) patients and evaluated the role of CSF and plasma sTREM2 as a potential diagnostic marker of prion disease. Our data indicate that, compared to controls, TREM2 is increased in sCJD patient brains at the mRNA and protein levels in a regional and subtype dependent fashion, and expressed in a subpopulation of microglia. In contrast, ADAM10 is increased at the protein, but not the mRNA level, with a restricted neuronal expression. Elevated CSF sTREM2 is found in sCJD, genetic CJD with mutations E200K and V210I in the prion protein gene (PRNP), and iatrogenic CJD, as compared to healthy controls (HC) (AUC = 0.78-0.90) and neurological controls (AUC = 0.73-0.85), while CSF sTREM2 is unchanged in fatal familial insomnia. sTREM2 in the CSF of cases with Alzheimer's disease, and multiple sclerosis was not significantly altered in our series. CSF sTREM2 concentrations in sCJD are PRNP codon 129 and subtype-related, correlate with CSF 14-3-3 positivity, total-tau and YKL-40, and increase with disease progression. In plasma, sTREM2 is increased in sCJD compared with HC (AUC = 0.80), displaying positive correlations with plasma total-tau, neurofilament light, and YKL-40. We conclude that comparative study of TREM2 in brain and biological fluids of prion diseases reveals TREM2 to be altered in human prion diseases with a potential value in target engagement, patient stratification, and disease monitoring.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00401-021-02296-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8113222PMC
June 2021

The role of cellular prion protein in lipid metabolism in the liver.

Prion 2020 12;14(1):95-108

Department of Neurology, Clinical Dementia Center, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.

Cellular prion protein (PrPC) is a plasma membrane glycophosphatidylinositol-anchored protein and it is involved in multiple functions, including neuroprotection and oxidative stress. So far, most of the PrPC functional research is done in neuronal tissue or cell lines; the role of PrPC in non-neuronal tissues such as liver is only poorly understood. To characterize the role of PrPC in the liver, a proteomics approach was applied in the liver tissue of PrPC knockout mice. The proteome analysis and biochemical validations showed an excessive fat accumulation in the liver of PrPC knockout mice with a change in mRNA expression of genes linked to lipid metabolism. In addition, the higher Bax to Bcl2 ratio, up-regulation of tgfb1 mRNA expression in PrPC knockout mice liver, further showed the evidences of metabolic disease. Over-expression of PrPC in fatty acid-treated AML12 hepatic cell line caused a reduction in excessive intracellular fat accumulation; shows association of PrPC levels and lipid metabolism. Therefore, based on observation of excessive fat globules in the liver of ageing PrPC knockout mice and the reduction of fat accumulation in AML12 cell line with PrPC over-expression, the role of PrPC in lipid metabolism is described.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/19336896.2020.1729074DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7153832PMC
December 2020

Effect of the micro-environment on α-synuclein conversion and implication in seeded conversion assays.

Transl Neurodegener 2020 17;9. Epub 2020 Jan 17.

1Department of Neurology, University Medicine Goettingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch -Straße 40, 37075 Göttingen, Germany.

Background: α-Synuclein is a small soluble protein, whose physiological function in the healthy brain is poorly understood. Intracellular inclusions of α-synuclein, referred to as Lewy bodies (LBs), are pathological hallmarks of α-synucleinopathies, such as Parkinson's disease (PD) or dementia with Lewy bodies (DLB).

Main Body: Understanding of the molecular basis as well as the factors or conditions promoting α-synuclein misfolding and aggregation is an important step towards the comprehension of pathological mechanism of α-synucleinopathies and for the development of efficient therapeutic strategies. Based on the conversion and aggregation mechanism of α-synuclein, novel diagnostic tests, such as protein misfolding seeded conversion assays, e.g. the real-time quaking-induced conversion (RT-QuIC), had been developed. In diagnostics, α-synuclein RT-QuIC exhibits a specificity between 82 and 100% while the sensitivity varies between 70 and 100% among different laboratories. In addition, the α-synuclein RT-QuIC can be used to study the α-synuclein-seeding-characteristics of different α-synucleinopathies and to differentiate between DLB and PD.

Conclusion: The variable diagnostic accuracy of current α-synuclein RT-QuIC occurs due to different protocols, cohorts and material etc.. An impact of micro-environmental factors on the α-synuclein aggregation and conversion process and the occurrence and detection of differential misfolded α-synuclein types or strains might underpin the clinical heterogeneity of α-synucleinopathies
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s40035-019-0181-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6966864PMC
January 2020

Validation of Poly(Propylene Imine) Glycodendrimers Towards Their Anti-prion Conversion Efficiency.

Mol Neurobiol 2020 Apr 17;57(4):1863-1874. Epub 2019 Dec 17.

Department of Neurology, University Medicine Goettingen and the German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.

Prion diseases, such as the sporadic Creutzfeldt-Jakob disease (sCJD), are a class of fatal neurodegenerative disorders. Currently, there is no efficient treatment or therapy available. Hence, the search for molecules that may inhibit the conversion of the cellular prion protein (PrP) into its pathological counterpart PrPScrapie (PrP) is of great urgency. Here, we report the generation- and dose-dependent biological action of dense-shell poly(propylene imine) (PPI) glycodendrimers by using scrapie-infected neuroblastoma (ScN2a) cells and the real-time quaking-induced conversion assay (RT-QuIC) for validation of anti-prion efficiencies. Whereas the 2nd and 3rd generation of PPI glycodendrimers exhibited anti-prion conversion efficiency in ScN2a cells validated by RT-QuIC analysis, we observed that the 4th generation of glycodendrimers had shown no significant effect. Translational RT-QuIC studies conducted with human prions derived from sCJD patients indicated an anti-prion conversion effect (not on PrP degradation) of PPI glycodendrimers against human prions with the highest inhibitory activity of the 4th generation of PPI glycodendrimers towards prion aggregation compared to the 2nd and 3rd generation. In conclusion, our study highlights the potential of PPI glycodendrimers as therapeutic compounds due to their anti-conversion activity on human prions in a PrP strain depending manner.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12035-019-01837-wDOI Listing
April 2020

The cellular prion protein and its derived fragments in human prion diseases and their role as potential biomarkers.

Expert Rev Mol Diagn 2019 11 26;19(11):1007-1018. Epub 2019 Sep 26.

Department of Neurology, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE) - site Göttingen , Göttingen , Germany.

: Human prion diseases are a heterogeneous group of incurable and debilitating conditions characterized by a progressive degeneration of the central nervous system. The conformational changes of the cellular prion protein and its formation into an abnormal isoform, spongiform degeneration, neuronal loss, and neuroinflammation are central to prion disease pathogenesis. It has been postulated that truncated variants of aggregation-prone proteins are implicated in neurodegenerative mechanisms. An increasing body of evidence indicates that proteolytic fragments and truncated variants of the prion protein are formed and accumulated in the brain of prion disease patients. These prion protein variants provide a high degree of relevance to disease pathology and diagnosis. : In the present review, we summarize the current knowledge on the occurrence of truncated prion protein species and their potential roles in pathophysiological states during prion diseases progression. In addition, we discuss their usability as a diagnostic biomarker in prion diseases. : Either as a primary factor in the formation of prion diseases or as a consequence from neuropathological affection, abnormal prion protein variants and fragments may provide independent information about mechanisms of prion conversion, pathological states, or disease progression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/14737159.2019.1667231DOI Listing
November 2019

RNA editing alterations define manifestation of prion diseases.

Proc Natl Acad Sci U S A 2019 09 6;116(39):19727-19735. Epub 2019 Sep 6.

Neurodegenerative Diseases Research Group, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;

Prion diseases are fatal neurodegenerative disorders caused by misfolding of the normal prion protein into an infectious cellular pathogen. Clinically characterized by rapidly progressive dementia and accounting for 85% of human prion disease cases, sporadic Creutzfeldt-Jakob disease (sCJD) is the prevalent human prion disease. Although sCJD neuropathological hallmarks are well-known, associated molecular alterations are elusive due to rapid progression and absence of preclinical stages. To investigate transcriptome alterations during disease progression, we utilized tg340-129MM mice infected with postmortem material from sCJD patients of the most susceptible genotype (MM1 subtype), a sCJD model that faithfully recapitulates the molecular and pathological alterations of the human disease. Here we report that transcriptomic analyses from brain cortex in the context of disease progression, reveal epitranscriptomic alterations (specifically altered RNA edited pathway profiles, eg., ER stress, lysosome) that are characteristic and possibly protective mainly for preclinical and clinical disease stages. Our results implicate regulatory epitranscriptomic mechanisms in prion disease neuropathogenesis, whereby RNA-editing targets in a humanized sCJD mouse model were confirmed in pathological human autopsy material.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1803521116DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6765247PMC
September 2019

MicroRNA Alterations in the Brain and Body Fluids of Humans and Animal Prion Disease Models: Current Status and Perspectives.

Front Aging Neurosci 2018 23;10:220. Epub 2018 Jul 23.

Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.

Prion diseases are transmissible progressive neurodegenerative conditions characterized by rapid neuronal loss accompanied by a heterogeneous neuropathology, including spongiform degeneration, gliosis and protein aggregation. The pathogenic mechanisms and the origins of prion diseases remain unclear on the molecular level. Even though neurodegenerative diseases, including prion diseases, represent distinct entities, their pathogenesis shares a number of features including disturbed protein homeostasis, an overload of protein clearance pathways, the aggregation of pathological altered proteins, and the dysfunction and/or loss of specific neuronal populations. Recently, direct links have been established between neurodegenerative diseases and miRNA dysregulated patterns. miRNAs are a class of small non-coding RNAs involved in the fundamental post-transcriptional regulation of gene expression. Studies of miRNA alterations in the brain and body fluids in human prion diseases provide important insights into potential miRNA-associated disease mechanisms and biomarker candidates. miRNA alterations in prion disease models represent a unique tool to investigate the cause-consequence relationships of miRNA dysregulation in prion disease pathology, and to evaluate the use of miRNAs in diagnosis as biomarkers. Here, we provide an overview of studies on miRNA alterations in human prion diseases and relevant disease models, in relation to pertinent studies on other neurodegenerative diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fnagi.2018.00220DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6064744PMC
July 2018

Cerebrospinal Fluid Prion Disease Biomarkers in Pre-clinical and Clinical Naturally Occurring Scrapie.

Mol Neurobiol 2018 Nov 23;55(11):8586-8591. Epub 2018 Mar 23.

Department of Neurology, University Medical Center, Göttingen, Germany.

The analysis of the cerebrospinal fluid (CSF) biomarkers in patients with suspected prion diseases became a useful tool in diagnostic routine. Prion diseases can only be identified at clinical stages when the disease already spread throughout the brain and massive neuronal damage occurs. Consequently, the accuracy of CSF tests detecting non-symptomatic patients is unknown. Here, we aimed to investigate the usefulness of CSF-based diagnostic tests in pre-clinical and clinical naturally occurring scrapie. While decreased total prion protein (PrP) levels and positive PrP seeding activity were already detectable at pre-symptomatic stages, the surrogate markers of neuronal damage total tau (tau) and 14-3-3 proteins were exclusively increased at clinical stages. The present findings confirm that alterations in PrP levels and conformation are primary events in the pathology of prion diseases preceding neuronal damage. Our work also supports the potential use of these tests in the screening of pre-symptomatic scrapie and human prion disease cases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12035-018-1014-zDOI Listing
November 2018

Regional and subtype-dependent miRNA signatures in sporadic Creutzfeldt-Jakob disease are accompanied by alterations in miRNA silencing machinery and biogenesis.

PLoS Pathog 2018 01 22;14(1):e1006802. Epub 2018 Jan 22.

Department of Neurology, University Medical School, Göttingen, Germany.

Increasing evidence indicates that microRNAs (miRNAs) are contributing factors to neurodegeneration. Alterations in miRNA signatures have been reported in several neurodegenerative dementias, but data in prion diseases are restricted to ex vivo and animal models. The present study identified significant miRNA expression pattern alterations in the frontal cortex and cerebellum of sporadic Creutzfeldt-Jakob disease (sCJD) patients. These changes display a highly regional and disease subtype-dependent regulation that correlates with brain pathology. We demonstrate that selected miRNAs are enriched in sCJD isolated Argonaute(Ago)-binding complexes in disease, indicating their incorporation into RNA-induced silencing complexes, and further suggesting their contribution to disease-associated gene expression changes. Alterations in the miRNA-mRNA regulatory machinery and perturbed levels of miRNA biogenesis key components in sCJD brain samples reported here further implicate miRNAs in sCJD gene expression (de)regulation. We also show that a subset of sCJD-altered miRNAs are commonly changed in Alzheimer's disease, dementia with Lewy bodies and fatal familial insomnia, suggesting potential common mechanisms underlying these neurodegenerative processes. Additionally, we report no correlation between brain and cerebrospinal fluid (CSF) miRNA-profiles in sCJD, indicating that CSF-miRNA profiles do not faithfully mirror miRNA alterations detected in brain tissue of human prion diseases. Finally, utilizing a sCJD MM1 mouse model, we analyzed the miRNA deregulation patterns observed in sCJD in a temporal manner. While fourteen sCJD-related miRNAs were validated at clinical stages, only two of those were changed at early symptomatic phase, suggesting that the miRNAs altered in sCJD may contribute to later pathogenic processes. Altogether, the present work identifies alterations in the miRNA network, biogenesis and miRNA-mRNA silencing machinery in sCJD, whereby contributions to disease mechanisms deserve further investigation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.ppat.1006802DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5794191PMC
January 2018

YKL-40 in the brain and cerebrospinal fluid of neurodegenerative dementias.

Mol Neurodegener 2017 Nov 10;12(1):83. Epub 2017 Nov 10.

Department of Neurology, University Medical School, Göttingen, Germany.

Background: YKL-40 (also known as Chitinase 3-like 1) is a glycoprotein produced by inflammatory, cancer and stem cells. Its physiological role is not completely understood but YKL-40 is elevated in the brain and cerebrospinal fluid (CSF) in several neurological and neurodegenerative diseases associated with inflammatory processes. Yet the precise characterization of YKL-40 in dementia cases is missing.

Methods: In the present study, we comparatively analysed YKL-40 levels in the brain and CSF samples from neurodegenerative dementias of different aetiologies characterized by the presence of cortical pathology and disease-specific neuroinflammatory signatures.

Results: YKL-40 was normally expressed in fibrillar astrocytes in the white matter. Additionally YKL-40 was highly and widely expressed in reactive protoplasmic cortical and perivascular astrocytes, and fibrillar astrocytes in sporadic Creutzfeldt-Jakob disease (sCJD). Elevated YKL-40 levels were also detected in Alzheimer's disease (AD) but not in dementia with Lewy bodies (DLB). In AD, YKL-40-positive astrocytes were commonly found in clusters, often around β-amyloid plaques, and surrounding vessels with β-amyloid angiopathy; they were also distributed randomly in the cerebral cortex and white matter. YKL-40 overexpression appeared as a pre-clinical event as demonstrated in experimental models of prion diseases and AD pathology. CSF YKL-40 levels were measured in a cohort of 288 individuals, including neurological controls (NC) and patients diagnosed with different types of dementia. Compared to NC, increased YKL-40 levels were detected in sCJD (p < 0.001, AUC = 0.92) and AD (p < 0.001, AUC = 0.77) but not in vascular dementia (VaD) (p > 0.05, AUC = 0.71) or in DLB/Parkinson's disease dementia (PDD) (p > 0.05, AUC = 0.70). Further, two independent patient cohorts were used to validate the increased CSF YKL-40 levels in sCJD. Additionally, increased YKL-40 levels were found in genetic prion diseases associated with the PRNP-D178N (Fatal Familial Insomnia) and PRNP-E200K mutations.

Conclusions: Our results unequivocally demonstrate that in neurodegenerative dementias, YKL-40 is a disease-specific marker of neuroinflammation showing its highest levels in prion diseases. Therefore, YKL-40 quantification might have a potential for application in the evaluation of therapeutic intervention in dementias with a neuroinflammatory component.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13024-017-0226-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5681777PMC
November 2017

MicroRNA Expression in the Locus Coeruleus, Entorhinal Cortex, and Hippocampus at Early and Middle Stages of Braak Neurofibrillary Tangle Pathology.

J Mol Neurosci 2017 Oct 5;63(2):206-215. Epub 2017 Sep 5.

CIBERNED (Network Centre for Biomedical Research of Neurodegenerative Diseases), Institute Carlos III, Ministry of Health, Madrid, Spain.

The present study analyzes by RT-qPCR the expression of microRNA (miRNA)-27a-3p, miRNA-124-3p, miRNA-132-3p, and miRNA-143-3p in the locus coeruleus (LC), entorhinal cortex (EC), CA1 region of the hippocampus (CA1), and dentate gyrus (DG) of middle-aged (MA) individuals with no brain lesions and of cases at Braak and Braak stages I-II and II-IV of neurofibrillary tangle (NFT) pathology. The most affected region is the LC in which miRNA-27a-3p, miRNA-124-3p, and miRNA-143-3p show a trend to increase at stages I-II and are significantly up-regulated at stages III-IV when compared with MA. Only miRNA-143-3p is up-regulated in the EC at stages III-IV when compared with MA and with stages I-II. No modifications in the expression levels of miRNA-27a-3p, miRNA-124-3p, miRNA-132-3p, and miRNA-143-3p are found in CA1 at any stage, whereas miRNA-124-3p is significantly down-regulated in DG at stages I-II. Accompanying in situ hybridization reveals miRNA-27a-3p, miRNA-124-3p, and miRNA-143-3 localization in neurons, indicating that changes in miRNA expression are not a direct effect of changes in the numbers of neurons and glial cells. Present observations show for the first time important miRNA de-regulation in the LC at the first stages of NFT. Since the LC is the main noradrenergic input to the cerebral cortex, key regulator of mood and depression, and one of the first nuclei affected in aging and Alzheimer's disease (AD), these findings provide insights for additional study of the LC in aging and AD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12031-017-0971-4DOI Listing
October 2017

Altered Ca homeostasis induces Calpain-Cathepsin axis activation in sporadic Creutzfeldt-Jakob disease.

Acta Neuropathol Commun 2017 04 27;5(1):35. Epub 2017 Apr 27.

Department of Neurology, University Medical Center Göttingen, and German Center for Neurodegenerative Diseases (DZNE), Robert Koch Strasse 40, 37075, Göttingen, Germany.

Sporadic Creutzfeldt-Jakob disease (sCJD) is the most prevalent form of human prion disease and it is characterized by the presence of neuronal loss, spongiform degeneration, chronic inflammation and the accumulation of misfolded and pathogenic prion protein (PrP). The molecular mechanisms underlying these alterations are largely unknown, but the presence of intracellular neuronal calcium (Ca) overload, a general feature in models of prion diseases, is suggested to play a key role in prion pathogenesis.Here we describe the presence of massive regulation of Ca responsive genes in sCJD brain tissue, accompanied by two Ca-dependent processes: endoplasmic reticulum stress and the activation of the cysteine proteases Calpains 1/2. Pathogenic Calpain proteins activation in sCJD is linked to the cleavage of their cellular substrates, impaired autophagy and lysosomal damage, which is partially reversed by Calpain inhibition in a cellular prion model. Additionally, Calpain 1 treatment enhances seeding activity of PrP in a prion conversion assay. Neuronal lysosomal impairment caused by Calpain over activation leads to the release of the lysosomal protease Cathepsin S that in sCJD mainly localises in axons, although massive Cathepsin S overexpression is detected in microglial cells. Alterations in Ca homeostasis and activation of Calpain-Cathepsin axis already occur at pre-clinical stages of the disease as detected in a humanized sCJD mouse model.Altogether our work indicates that unbalanced Calpain-Cathepsin activation is a relevant contributor to the pathogenesis of sCJD at multiple molecular levels and a potential target for therapeutic intervention.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s40478-017-0431-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5408381PMC
April 2017

Molecular Alterations in the Cerebellum of Sporadic Creutzfeldt-Jakob Disease Subtypes with DJ-1 as a Key Regulator of Oxidative Stress.

Mol Neurobiol 2018 01 14;55(1):517-537. Epub 2016 Dec 14.

Department of Neurology, University Medical Center Goettingen (UMG) and German Center for Neurodegenerative Diseases (DZNE) Goettingen, Robert-Koch-Str., 40, 37075, Goettingen, Germany.

Cerebellar damage and granular and Purkinje cell loss in sporadic Creutzfeldt-Jakob disease (sCJD) highlight a critical involvement of the cerebellum during symptomatic progression of the disease. In this project, global proteomic alterations in the cerebellum of brain from the two most prevalent subtypes (MM1 and VV2) of sCJD were studied. Two-dimensional gel electrophoresis (2DE) coupled mass spectrometric identification revealed 40 proteins in MM1 and 43 proteins in VV2 subtype to be differentially expressed. Of those, 12 proteins showed common differential expression in their expression between two subtypes. Differentially expressed proteins mainly belonged to (i) cell cycle, gene expression and cell death; (ii) cellular stress response/oxidative stress (OS) and (iii) signal transduction and synaptic functions, related molecular functions. We verified 10 differentially expressed proteins at transcriptional and translational level as well. Interestingly, protein deglycase DJ-1 (an antioxidative protein) showed an increase in its messenger RNA (mRNA) expression in both MM1 and VV2 subtypes but protein expression only in VV2 subtype in cerebellum of sCJD patients. Nuclear translocalization of DJ-1 confirmed its expressional alteration due to OS in sCJD. Downstream experiments showed the activation of nuclear factor erythroid-2 related factor 2 (Nrf2)/antioxidative response element (ARE) pathway. DJ-1 protein concentration was significantly increased during the clinical phase in cerebrospinal fluid of sCJD patients and also at presymptomatic and symptomatic stages in cerebellum of humanized PrP transgenic mice inoculated with sCJD (MM1 and VV2) brain. These results suggest the implication of oxidative stress during the pathophysiology of sCJD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12035-016-0294-4DOI Listing
January 2018

Evaluation of α-synuclein as a novel cerebrospinal fluid biomarker in different forms of prion diseases.

Alzheimers Dement 2017 Jun 18;13(6):710-719. Epub 2016 Nov 18.

Department of Neurology, Clinical Dementia Center, University Medical Center Göttingen, Göttingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Site Göttingen, Germany.

Introduction: Accurate diagnosis of prion diseases and discrimination from alternative dementias gain importance in the clinical routine, but partial overlap in cerebrospinal fluid (CSF) biomarkers impedes absolute discrimination in the differential diagnostic context.

Methods: We established the clinical parameters for prion disease diagnosis for the quantification of CSF α-synuclein in patients with sporadic (n = 234) and genetic (n = 56) prion diseases, in cases with cognitive impairment/dementia or neurodegenerative disease (n = 278), and in the neurologic control group (n = 111).

Results: An optimal cutoff value of 680 pg/mL α-synuclein results in 94% sensitivity and 96% specificity when diagnosing sporadic Creutzfeldt-Jakob disease (CJD). Genetic CJD cases showed increased CSF α-synuclein values. No increased α-synuclein levels were detected in non-CJD cases with rapid progression course.

Discussion: Detection of α-synuclein in the CSF of patients with suspected CJD is a valuable diagnostic test reaching almost full discrimination from non-prion disease cases. These data highlight the utility of CSF α-synuclein quantification in front of classical CSF biomarkers in clinical routine.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jalz.2016.09.013DOI Listing
June 2017

Reelin Expression in Creutzfeldt-Jakob Disease and Experimental Models of Transmissible Spongiform Encephalopathies.

Mol Neurobiol 2017 Oct 10;54(8):6412-6425. Epub 2016 Oct 10.

Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-21, 08028, Barcelona, Spain.

Reelin is an extracellular glycoprotein involved in key cellular processes in developing and adult nervous system, including regulation of neuronal migration, synapse formation, and plasticity. Most of these roles are mediated by the intracellular phosphorylation of disabled-1 (Dab1), an intracellular adaptor molecule, in turn mediated by binding Reelin to its receptors. Altered expression and glycosylation patterns of Reelin in cerebrospinal and cortical extracts have been reported in Alzheimer's disease. However, putative changes in Reelin are not described in natural prionopathies or experimental models of prion infection or toxicity. With this is mind, in the present study, we determined that Reelin protein and mRNA levels increased in CJD human samples and in mouse models of human prion disease in contrast to murine models of prion infection. However, changes in Reelin expression appeared only at late terminal stages of the disease, which prevent their use as an efficient diagnostic biomarker. In addition, increased Reelin in CJD and in in vitro models does not correlate with Dab1 phosphorylation, indicating failure in its intracellular signaling. Overall, these findings widen our understanding of the putative changes of Reelin in neurodegeneration.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12035-016-0177-8DOI Listing
October 2017

Identification of new molecular alterations in fatal familial insomnia.

Hum Mol Genet 2016 06 7;25(12):2417-2436. Epub 2016 Apr 7.

Institute of Neuropathology, Service of Pathological Anatomy, Bellvitge University Hospital, University of Barcelona, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, and Biomedical Research Center of Neurodegenerative Diseases (CIBERNED) Hospitalet del Llobregat 08907, Spain

Fatal familial insomnia is a rare disease caused by a D178N mutation in combination with methionine (Met) at codon 129 in the mutated allele of PRNP (D178N-129M haplotype). FFI is manifested by sleep disturbances with insomnia, autonomic disorders and spontaneous and evoked myoclonus, among other symptoms. This study describes new neuropathological and biochemical observations in a series of eight patients with FFI. The mediodorsal and anterior nuclei of the thalamus have severe neuronal loss and marked astrocytic gliosis in every case, whereas the entorhinal cortex is variably affected. Spongiform degeneration only occurs in the entorhinal cortex. Synaptic and fine granular proteinase K digestion (PrPres) immunoreactivity is found in the entorhinal cortex but not in the thalamus. Interleukin 6, interleukin 10 receptor alpha subunit, colony stimulating factor 3 receptor and toll-like receptor 7 mRNA expression increases in the thalamus in FFI. PrPc levels are significantly decreased in the thalamus, entorhinal cortex and cerebellum in FFI. This is accompanied by a particular PrPc and PrPres band profile. Altered PrP solubility consistent with significantly reduced PrP levels in the cytoplasmic fraction and increased PrP levels in the insoluble fraction are identified in FFI cases. Amyloid-like deposits are only seen in the entorhinal cortex. The RT-QuIC assay reveals that all the FFI samples of the entorhinal cortex are positive, whereas the thalamus is positive only in three cases and the cerebellum in two cases. The present findings unveil particular neuropathological and neuroinflammatory profiles in FFI and novel characteristics of natural prion protein in FFI, altered PrPres and Scrapie PrP (abnormal and pathogenic PrP) patterns and region-dependent putative capacity of PrP seeding.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddw108DOI Listing
June 2016

Quantification of CSF biomarkers using an electrochemiluminescence-based detection system in the differential diagnosis of AD and sCJD.

J Neurol 2015 Oct 11;262(10):2305-11. Epub 2015 Jul 11.

Department of Neurology, Clinical Dementia Center, University Medical Center, Georg-August University and German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Str. 40, 37075, Goettingen, Germany.

The identification of reliable diagnostic tools for the differential diagnosis between sporadic Creutzfeldt-Jakob Disease (sCJD) and Alzheimer's disease (AD) remains impeded by the existing clinical, neuropathological and molecular overlap between both diseases. The development of new tools for the quantitative measurement of biomarkers is gaining experimental momentum due to recent advances in high-throughput screening analysis and with the optimization of assays for their quantification in biological fluids, including cerebrospinal fluid (CSF). Electrochemiluminescence (ECL)-based immunoassays have demonstrated to achieve clinical quality performance in a variety of sample types due to its high sensitivity and dynamic range. Here, we quantified the CSF levels of Tau-protein, β-amyloid 1-42 (Aβ42) and α-synuclein, as important biomarkers in CSF used in the differential diagnosis of neurodegenerative disorders in 12 AD, 12 sCJD and 12 control cases by singleplex ECL-based technology. Its performance has been compared to classical enzyme-linked immunosorbent assays (ELISA) to confront their clinical accuracy. ECL-based technology validates previous data obtained with ELISA and presents a higher performance in the discrimination of three analysed groups as determined by increased area under the curve (AUC) values for the three biomarkers. Importantly, α-synuclein levels detected by ECL allow an excellent discrimination between sCJD cases and AD and control cases, unveiling a new clinical approach for the differential diagnosis of sCJD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00415-015-7837-xDOI Listing
October 2015

Subtype and regional-specific neuroinflammation in sporadic creutzfeldt-jakob disease.

Front Aging Neurosci 2014 4;6:198. Epub 2014 Aug 4.

Institute of Neuropathology, IDIBELL-University Hospital Bellvitge, University of Barcelona, Hospitalet de Llobregat , Barcelona , Spain ; Network Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Ministry of Health , Madrid , Spain.

The present study identifies deregulated cytokines and mediators of the immune response in the frontal cortex and cerebellum of sporadic Creutzfeldt-Jakob disease (sCJD) MM1 and VV2 subtypes compared to age-matched controls. Deregulated genes include pro- and anti-inflammatory cytokines, toll-like receptors, colony stimulating factors, cathepsins, members of the complement system, and members of the integrin and CTL/CTLD family with particular regional and sCJD subtype patterns. Analysis of cytokines and mediators at protein level shows expression of selected molecules and receptors in neurons, in astrocytes, and/or in microglia, thus suggesting interactions between neurons and glial cells, mainly microglia, in the neuroinflammatory response in sCJD. Similar inflammatory responses have been shown in the tg340 sCJD MM1 mice, revealing a progressive deregulation of inflammatory mediators with disease progression. Yet, inflammatory molecules involved are subjected to species differences in humans and mice. Moreover, inflammatory-related cell signaling pathways NFκB/IKK and JAK/STAT are activated in sCJD and sCJD MM1 mice. Together, the present observations show a self-sustained complex inflammatory and inflammatory-related responses occurring already at early clinical stages in animal model and dramatically progressing at advanced stages of sCJD. Considering this scenario, measures tailored to modulate (activate or inhibit) specific molecules could be therapeutic options in CJD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fnagi.2014.00198DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4120692PMC
August 2014