Publications by authors named "Kathryn Scobie"

3 Publications

  • Page 1 of 1

Rodent control to fight plague: field assessment of methods based on rat density reduction.

Integr Zool 2021 Mar 11. Epub 2021 Mar 11.

Institut Pasteur de Madagascar, Plague Unit, Antananarivo, Madagascar.

Rodents represent a serious threat to food security and public health. The extent to which rodent control can mitigate the risk from rodent-borne disease depends on both the effectiveness of control in reducing rodent abundance and the impact on disease epidemiology. Focusing on a plague-endemic region of Madagascar, this study compared the effectiveness of 3 methods: live-traps, snap-traps, and rodenticides. Control interventions were implemented inside houses between May and October 2019. Tracking tiles monitored rodent abundance. Rodent fleas, the vector involved in plague transmission, were collected. Rodent populations consisted of Rattus rattus and Mus musculus. In terms of trap success, we found that our live-trap regime was more effective than snap-traps. While all 3 control strategies appeared to reduce in-house rodent activity in the short term, we found no evidence of a longer-term effect, with in-house rodent abundance in treated sites comparable to non-treatment sites by the following month. Endemic flea, Synopsyllus fonquerniei, is a key plague vector usually found on rats living outdoors. Although we found no evidence that its abundance inside houses increased following control, this may have been due to a lack of power caused by significant variation in S. fonquerniei abundance. The presence of S. fonquerniei in houses was more likely when S. fonquerniei abundance on outdoor rats was higher, which in turn correlated with high rat abundance. Our results emphasize that control strategies need to consider this connectivity between in-house rat-flea populations and the outdoor populations, and any potential consequences for plague transmission.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/1749-4877.12529DOI Listing
March 2021

Evolution of magnetic resonance imaging changes associated with cerebral hypoxia-ischemia and a relatively selective white matter injury in neonatal rats.

Pediatr Res 2006 Apr;59(4 Pt 1):554-9

Institute for Biodiagnostics, National Research Council of Canada, Calgary, Alberta, Canada T2N 4N1.

We hypothesized that a combination of quantitative magnetic resonance imaging (MRI) sequences would detect a differential evolution of hypoxic-ischemic changes in white matter compared with gray matter in a recently developed model of unilateral mild cerebral hypoxia-ischemia in the 7-d-old rat. Using this model, which involved unilateral carotid artery occlusion and exposure to hypoxia for 45-50 min, maps of apparent diffusion coefficients of water (ADC), T1, T2, and cerebral blood flow (CBF) were acquired either before hypoxia-ischemia or at 1, 24, or 48 h and at 7 d post-hypoxia-ischemia followed by brain processing for histology. At 1 h post-hypoxia-ischemia, MRI changes in white matter ipsilateral to the hypoxia-ischemia were not as pronounced as those in gray matter. However, increases in T1, T2 and ADC and decreases in CBF within white matter enhanced over time, with changes being maximal at 48 h post-hypoxia-ischemia, whereas changes in the cortical gray matter normalized over this time. By 7 d post-hypoxia-ischemia, there were no differences in ADC, T1, T2, or CBF between hemispheres despite there being histologic changes in white matter within the hypoxic-ischemic hemisphere including increased glial proliferation and reactivity, reduced myelin basic protein, and increased cell death. The results demonstrate that increases in ADC and T2 observed subacutely in the days following hypoxia-ischemia are associated with rather selective white matter damage and suggest that diffuse white matter hyperintensities and increased ADC reported in infants are transient MRI changes post- hypoxia-ischemia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1203/01.pdr.0000203099.40643.84DOI Listing
April 2006

Magnetic resonance imaging of differential gray versus white matter injury following a mild or moderate hypoxic-ischemic insult in neonatal rats.

Neurosci Lett 2004 Sep;368(3):332-6

Institute for Biodiagnostics, National Research Council of Canada, B153, 3330 Hospital Dr. NW, Calgary, Alta., Canada T2N 4N1.

Selective white matter injury in the pre-mature infants suggests it has a greater susceptibility to hypoxia-ischemia. To investigate whether white matter injury would predominate following a mild hypoxic-ischemic insult, 7-day-old rats underwent either mild or moderate hypoxia-ischemia and magnetic resonance imaging 24 h later. Mild and moderate hypoxia-ischemia were produced by unilateral carotid artery occlusion plus exposure to hypoxia for either 45-50 or 90 min at ambient temperatures of 34.5 or 35.5 degrees C, respectively. Following mild hypoxia-ischemia, there was a significant increase in T(1) and T(2) within periventricular white matter (e.g. corpus callosum) in the hemisphere ipsilateral to the occlusion compared to that contralaterally and less of an increase within gray matter (e.g. cortex and striatum). This corresponded to relatively selective white matter injury detected histologically. Following a moderate hypoxia-ischemia, both gray and white matter was severely injured with marked increases in T(1) and T(2) occurring in both white and gray matter regions ipsilateral to the hypoxia-ischemia. We conclude that a mild insult, consisting of a short duration of hypoxia-ischemia at a slightly lower body temperature than a moderate hypoxic-ischemic insult, produces enhanced injury in white matter and a relative sparing of gray matter.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2004.07.065DOI Listing
September 2004