Publications by authors named "Kathryn I Alpert"

18 Publications

  • Page 1 of 1

Cortical thickness across the lifespan: Data from 17,075 healthy individuals aged 3-90 years.

Hum Brain Mapp 2021 Feb 17. Epub 2021 Feb 17.

Laboratory of Psychiatric Neuroimaging, Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.

Delineating the association of age and cortical thickness in healthy individuals is critical given the association of cortical thickness with cognition and behavior. Previous research has shown that robust estimates of the association between age and brain morphometry require large-scale studies. In response, we used cross-sectional data from 17,075 individuals aged 3-90 years from the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to infer age-related changes in cortical thickness. We used fractional polynomial (FP) regression to quantify the association between age and cortical thickness, and we computed normalized growth centiles using the parametric Lambda, Mu, and Sigma method. Interindividual variability was estimated using meta-analysis and one-way analysis of variance. For most regions, their highest cortical thickness value was observed in childhood. Age and cortical thickness showed a negative association; the slope was steeper up to the third decade of life and more gradual thereafter; notable exceptions to this general pattern were entorhinal, temporopolar, and anterior cingulate cortices. Interindividual variability was largest in temporal and frontal regions across the lifespan. Age and its FP combinations explained up to 59% variance in cortical thickness. These results may form the basis of further investigation on normative deviation in cortical thickness and its significance for behavioral and cognitive outcomes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/hbm.25364DOI Listing
February 2021

Subcortical volumes across the lifespan: Data from 18,605 healthy individuals aged 3-90 years.

Hum Brain Mapp 2021 Feb 11. Epub 2021 Feb 11.

Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA.

Age has a major effect on brain volume. However, the normative studies available are constrained by small sample sizes, restricted age coverage and significant methodological variability. These limitations introduce inconsistencies and may obscure or distort the lifespan trajectories of brain morphometry. In response, we capitalized on the resources of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to examine age-related trajectories inferred from cross-sectional measures of the ventricles, the basal ganglia (caudate, putamen, pallidum, and nucleus accumbens), the thalamus, hippocampus and amygdala using magnetic resonance imaging data obtained from 18,605 individuals aged 3-90 years. All subcortical structure volumes were at their maximum value early in life. The volume of the basal ganglia showed a monotonic negative association with age thereafter; there was no significant association between age and the volumes of the thalamus, amygdala and the hippocampus (with some degree of decline in thalamus) until the sixth decade of life after which they also showed a steep negative association with age. The lateral ventricles showed continuous enlargement throughout the lifespan. Age was positively associated with inter-individual variability in the hippocampus and amygdala and the lateral ventricles. These results were robust to potential confounders and could be used to examine the functional significance of deviations from typical age-related morphometric patterns.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/hbm.25320DOI Listing
February 2021

Greater male than female variability in regional brain structure across the lifespan.

Hum Brain Mapp 2020 Oct 12. Epub 2020 Oct 12.

FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain.

For many traits, males show greater variability than females, with possible implications for understanding sex differences in health and disease. Here, the ENIGMA (Enhancing Neuro Imaging Genetics through Meta-Analysis) Consortium presents the largest-ever mega-analysis of sex differences in variability of brain structure, based on international data spanning nine decades of life. Subcortical volumes, cortical surface area and cortical thickness were assessed in MRI data of 16,683 healthy individuals 1-90 years old (47% females). We observed significant patterns of greater male than female between-subject variance for all subcortical volumetric measures, all cortical surface area measures, and 60% of cortical thickness measures. This pattern was stable across the lifespan for 50% of the subcortical structures, 70% of the regional area measures, and nearly all regions for thickness. Our findings that these sex differences are present in childhood implicate early life genetic or gene-environment interaction mechanisms. The findings highlight the importance of individual differences within the sexes, that may underpin sex-specific vulnerability to disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/hbm.25204DOI Listing
October 2020

Brain morphometric differences in youth with and without perinatally-acquired HIV: A cross-sectional study.

Neuroimage Clin 2020 16;26:102246. Epub 2020 Mar 16.

Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, USA; Department of Radiology, Northwestern University, Chicago, IL, USA. Electronic address:

Youth with perinatally-acquired HIV (PHIV) experience specific and global cognitive deficits at increased rates compared to typically-developing HIV-uninfected youth. In youth with PHIV, HIV infects the brain early in development. Neuroimaging studies have demonstrated altered grey matter morphometry in youth with PHIV compared to typically-developing youth. This study examined cortical thickness, surface area, and gyrification of grey matter in youth (age 11-20 years old) with PHIV (n = 40) from the Pediatric HIV/AIDS Cohort Study (PHACS) compared to typically-developing presumed HIV uninfected and unexposed youth (n = 80) from the Pediatric Imaging, Neurocognition and Genetics Study (PING) using structural magnetic resonance imaging. This study also examined the relationship between grey matter morphometry and age. Youth with PHIV had reduced cortical thickness, surface area, and gyrification compared to typically-developing youth. In addition, an inverse relationship between age and grey matter volume was found in typically-developing youth, but was not observed in youth with PHIV. Longitudinal studies are necessary to understand the neurodevelopmental trajectory of youth with PHIV.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nicl.2020.102246DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7132093PMC
February 2021

The Association Between Familial Risk and Brain Abnormalities Is Disease Specific: An ENIGMA-Relatives Study of Schizophrenia and Bipolar Disorder.

Biol Psychiatry 2019 10 13;86(7):545-556. Epub 2019 Jun 13.

Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, Hartford, Connecticut; Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts.

Background: Schizophrenia and bipolar disorder share genetic liability, and some structural brain abnormalities are common to both conditions. First-degree relatives of patients with schizophrenia (FDRs-SZ) show similar brain abnormalities to patients, albeit with smaller effect sizes. Imaging findings in first-degree relatives of patients with bipolar disorder (FDRs-BD) have been inconsistent in the past, but recent studies report regionally greater volumes compared with control subjects.

Methods: We performed a meta-analysis of global and subcortical brain measures of 6008 individuals (1228 FDRs-SZ, 852 FDRs-BD, 2246 control subjects, 1016 patients with schizophrenia, 666 patients with bipolar disorder) from 34 schizophrenia and/or bipolar disorder family cohorts with standardized methods. Analyses were repeated with a correction for intracranial volume (ICV) and for the presence of any psychopathology in the relatives and control subjects.

Results: FDRs-BD had significantly larger ICV (d = +0.16, q < .05 corrected), whereas FDRs-SZ showed smaller thalamic volumes than control subjects (d = -0.12, q < .05 corrected). ICV explained the enlargements in the brain measures in FDRs-BD. In FDRs-SZ, after correction for ICV, total brain, cortical gray matter, cerebral white matter, cerebellar gray and white matter, and thalamus volumes were significantly smaller; the cortex was thinner (d < -0.09, q < .05 corrected); and third ventricle was larger (d = +0.15, q < .05 corrected). The findings were not explained by psychopathology in the relatives or control subjects.

Conclusions: Despite shared genetic liability, FDRs-SZ and FDRs-BD show a differential pattern of structural brain abnormalities, specifically a divergent effect in ICV. This may imply that the neurodevelopmental trajectories leading to brain anomalies in schizophrenia or bipolar disorder are distinct.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopsych.2019.03.985DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7068800PMC
October 2019

In vivo hippocampal subfield shape related to TDP-43, amyloid beta, and tau pathologies.

Neurobiol Aging 2019 02 25;74:171-181. Epub 2018 Oct 25.

Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. Electronic address:

Despite advances in the development of biomarkers for Alzheimer's disease (AD), accurate ante-mortem diagnosis remains challenging because a variety of neuropathologic disease states can coexist and contribute to the AD dementia syndrome. Here, we report a neuroimaging study correlating hippocampal deformity with regional AD and transactive response DNA-binding protein of 43 kDA pathology burden. We used hippocampal shape analysis of ante-mortem T1-weighted structural magnetic resonance imaging images of 42 participants from two longitudinal cohort studies conducted by the Rush Alzheimer's Disease Center. Surfaces were generated for the whole hippocampus and zones approximating the underlying subfields using a previously developed automated image-segmentation pipeline. Multiple linear regression models were constructed to correlate the shape with pathology measures while accounting for covariates, with relationships mapped out onto hippocampal surface locations. A significant relationship existed between higher paired helical filaments-tau burden and inward hippocampal shape deformity in zones approximating CA1 and subiculum which persisted after accounting for coexisting pathologies. No significant patterns of inward surface deformity were associated with amyloid-beta or transactive response DNA-binding protein of 43 kDA after including covariates. Our findings indicate that hippocampal shape deformity measures in surface zones approximating CA1 may represent a biomarker for postmortem AD pathology.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neurobiolaging.2018.10.013DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6331233PMC
February 2019

Regional cortical thinning in young adults with schizophrenia but not psychotic or non-psychotic bipolar I disorder.

Int J Bipolar Disord 2018 Jul 11;6(1):16. Epub 2018 Jul 11.

Department of Psychiatry, Washington University Medical School, St. Louis, USA.

Background: Schizophrenia shares some genetic risk and clinical symptoms with bipolar disorder. Clinical heterogeneity across subjects is thought to contribute to variable structural imaging findings across studies. The current study investigates cortical thickness in young adults diagnosed with schizophrenia or bipolar I disorder with a history of hyperthymic mania. We hypothesize that cortical thickness will be most similar between SCZ and the psychotic bipolar 1 disorder subtype.

Methods: Patients with schizophrenia (n = 52), psychotic bipolar I disorder (PBD; n = 49) and non-psychotic bipolar I disorder (NPBD; n = 24) and healthy controls (n = 40) were scanned in a 3T Trio MRI. The thickness of 34 cortical regions was estimated with FreeSurfer, and analyzed using univariate analyses of variance. Relationships to psychotic (SAPS) and negative (SANS) symptoms were investigated using linear regression.

Results: Cortical thickness showed significant group effects, after covarying for sex, age, and intracranial volume (p = 0.001). SCZ subjects had thinner paracentral, inferior parietal, supramarginal and fusiform cortices compared to CON. Caudal anterior cingulate cortical thickness was increased in SCZ, PBD and NPBD. Cortical thickness in PBD and NPBD were not significantly different from controls. Significant partial correlations were observed for SAPS severity with middle temporal (r = - 0.26; p = 0.001) and fusiform (- 0.26; p = 0.001) cortical thickness.

Conclusions: Individuals with SCZ displayed significantly reduced cortical thickness in several cortical regions compared to both CON and bipolar. We found that SCZ participants had significant cortical thinning relative to CON and bipolar disorder most significantly in the frontal (i.e. paracentral), parietal (i.e. inferior parietal, supramarginal), and temporal (i.e. middle temporal, fusiform) cortices.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s40345-018-0124-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6161965PMC
July 2018

Cortical Brain Abnormalities in 4474 Individuals With Schizophrenia and 5098 Control Subjects via the Enhancing Neuro Imaging Genetics Through Meta Analysis (ENIGMA) Consortium.

Biol Psychiatry 2018 11 14;84(9):644-654. Epub 2018 May 14.

Division of Mental Health and Addiction, NORMENT, K.G. Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway.

Background: The profile of cortical neuroanatomical abnormalities in schizophrenia is not fully understood, despite hundreds of published structural brain imaging studies. This study presents the first meta-analysis of cortical thickness and surface area abnormalities in schizophrenia conducted by the ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) Schizophrenia Working Group.

Methods: The study included data from 4474 individuals with schizophrenia (mean age, 32.3 years; range, 11-78 years; 66% male) and 5098 healthy volunteers (mean age, 32.8 years; range, 10-87 years; 53% male) assessed with standardized methods at 39 centers worldwide.

Results: Compared with healthy volunteers, individuals with schizophrenia have widespread thinner cortex (left/right hemisphere: Cohen's d = -0.530/-0.516) and smaller surface area (left/right hemisphere: Cohen's d = -0.251/-0.254), with the largest effect sizes for both in frontal and temporal lobe regions. Regional group differences in cortical thickness remained significant when statistically controlling for global cortical thickness, suggesting regional specificity. In contrast, effects for cortical surface area appear global. Case-control, negative, cortical thickness effect sizes were two to three times larger in individuals receiving antipsychotic medication relative to unmedicated individuals. Negative correlations between age and bilateral temporal pole thickness were stronger in individuals with schizophrenia than in healthy volunteers. Regional cortical thickness showed significant negative correlations with normalized medication dose, symptom severity, and duration of illness and positive correlations with age at onset.

Conclusions: The findings indicate that the ENIGMA meta-analysis approach can achieve robust findings in clinical neuroscience studies; also, medication effects should be taken into account in future genetic association studies of cortical thickness in schizophrenia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopsych.2018.04.023DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6177304PMC
November 2018

Subtle hippocampal deformities in breast cancer survivors with reduced episodic memory and self-reported cognitive concerns.

Neuroimage Clin 2017 16;14:685-691. Epub 2017 Mar 16.

Division of Clinical Psychology, Northwestern University Feinberg School of Medicine, United States; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, United States; Department of Radiology, Northwestern University Feinberg School of Medicine, United States.

Cancer survivors have lingering cognitive problems, however the anatomical basis for these problems has yet to be fully elucidated. Clinical studies as well as animal models of chemotherapy have pinpointed cell and volume loss to the hippocampus, however, few studies have performed shape analysis of the hippocampus on cancer survivors. This study used high-dimensional deformation mapping analysis to test whether localized hippocampal deformation differs in breast cancer survivors who received adjuvant chemotherapy coupled with hormone blockade therapy, and if deformation was related to subjective self-reported concerns and cognitive performance. 3 T MRI images were acquired from 16 pre-menopausal breast cancer survivors and 18 healthy controls without a history of cancer. Breast cancer survivors had undergone chemotherapy within the eighteen months prior to the study, and were receiving estrogen-blockade therapy at the time of the study. Automated high-dimensional deformation mapping was used to compare localized hippocampal deformation differences between groups. Self-reported subjective concerns were assessed using Neuro-QOL Cognitive Function assessment, whereas cognitive performance was evaluated using the NIH Toolbox Cognition Battery. Relative to healthy controls, cancer survivors showed significantly more inward hippocampal deformation, worse self-reported cognitive functioning, and inferior episodic memory test score. This study is the first of its kind to examine the relationship between hippocampal deformity and cognitive impairment in cancer survivors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nicl.2017.03.004DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5369871PMC
November 2017

Deformed Subcortical Structures Are Related to Past HIV Disease Severity in Youth With Perinatally Acquired HIV Infection.

J Pediatric Infect Dis Soc 2016 Dec;5(suppl 1):S6-S14

Department of Psychiatry and Behavioral Sciences.

Background: Combination antiretroviral therapy has led to increased survival among youth with perinatally acquired HIV (PHIV). However, cognitive deficits continue to be common. Histopathological studies in adults have found HIV concentrated in subcortical structures, which are involved in sensory processing, movement, and higher-order cognition that emerges with development.

Methods: We conducted magnetic resonance imaging and cognitive testing in 40 youth with PHIV at one site of the Adolescent Master Protocol of the Pediatric HIV/AIDS Cohort Study. We collected HIV disease-severity measures and substance-use reports. Subcortical volume and shape deformation were generated with FreeSurfer-Initiated Large Deformation Diffeomorphic Metric Mapping. Inward shape deformation was defined as negative displacement. We evaluated associations of subcortical shape deformation with past HIV severity after adjustment for sex, age at neuroimaging, age at HIV severity marker, and substance use. We examined associations between subcortical deformation and cognitive function.

Results: Negative correlations between shape deformation and peak HIV viral load (VL) were found in clusters in the caudate tail, globus pallidus, lateral putamen, and anterior and medial thalamus. Positive correlations between shape deformation and nadir CD4-positive T-lymphocyte percentage (CD4%) were found in clusters in the medial and posterior thalamus. Inward deformation in caudate and thalamic clusters correlated with worse cognition.

Conclusions: Youth with PHIV have demonstrable subcortical shape deformation related to past HIV severity and cognition; inward deformation was associated with higher peak VL, lower nadir CD4%, and worse cognition. Identifying subcortical deformation may inform clinical practice for early intervention to help improve cognitive outcomes and assess the neuroefficacy of combination antiretroviral therapy in youth with PHIV.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/jpids/piw051DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5181545PMC
December 2016

Subcortical neuromorphometry in schizophrenia spectrum and bipolar disorders.

Neuroimage Clin 2016 23;11:276-286. Epub 2016 Feb 23.

Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, United States.

Background: Disorders within the schizophrenia spectrum genetically overlap with bipolar disorder, yet questions remain about shared biological phenotypes. Investigation of brain structure in disease has been enhanced by developments in shape analysis methods that can identify subtle regional surface deformations. Our study aimed to identify brain structure surface deformations that were common across related psychiatric disorders, and characterize differences.

Methods: Using the automated FreeSurfer-initiated Large Deformation Diffeomorphic Metric Mapping, we examined volumes and shapes of seven brain structures: hippocampus, amygdala, caudate, nucleus accumbens, putamen, globus pallidus and thalamus. We compared findings in controls (CON; n = 40), and those with schizophrenia (SCZ; n = 52), schizotypal personality disorder (STP; n = 12), psychotic bipolar disorder (P-BP; n = 49) and nonpsychotic bipolar disorder (N-BP; n = 24), aged 15-35. Relationships between morphometric measures and positive, disorganized and negative symptoms were also investigated.

Results: Inward deformation was present in the posterior thalamus in SCZ, P-BP and N-BP; and in the subiculum of the hippocampus in SCZ and STP. Most brain structures however showed unique shape deformations across groups. Correcting for intracranial size resulted in volumetric group differences for caudate (p < 0.001), putamen (p < 0.01) and globus pallidus (p < 0.001). Shape analysis showed dispersed patterns of expansion on the basal ganglia in SCZ. Significant clinical relationships with hippocampal, amygdalar and thalamic volumes were observed.

Conclusions: Few similarities in surface deformation patterns were seen across groups, which may reflect differing neuropathologies. Posterior thalamic contraction in SCZ and BP suggest common genetic or environmental antecedents. Surface deformities in SCZ basal ganglia may have been due to antipsychotic drug effects.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nicl.2016.02.011DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4781974PMC
December 2016

SchizConnect: Mediating neuroimaging databases on schizophrenia and related disorders for large-scale integration.

Neuroimage 2016 Jan 30;124(Pt B):1155-1167. Epub 2015 Jun 30.

Information Sciences Institute, University of Southern California, Marina del Rey, CA, USA; Digital Government Research Center, University of Southern California, Los Angeles, CA, USA; Department of Computer Science, University of Southern California, Los Angeles, CA, USA.

SchizConnect (www.schizconnect.org) is built to address the issues of multiple data repositories in schizophrenia neuroimaging studies. It includes a level of mediation--translating across data sources--so that the user can place one query, e.g. for diffusion images from male individuals with schizophrenia, and find out from across participating data sources how many datasets there are, as well as downloading the imaging and related data. The current version handles the Data Usage Agreements across different studies, as well as interpreting database-specific terminologies into a common framework. New data repositories can also be mediated to bring immediate access to existing datasets. Compared with centralized, upload data sharing models, SchizConnect is a unique, virtual database with a focus on schizophrenia and related disorders that can mediate live data as information is being updated at each data source. It is our hope that SchizConnect can facilitate testing new hypotheses through aggregated datasets, promoting discovery related to the mechanisms underlying schizophrenic dysfunction.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2015.06.065DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4651768PMC
January 2016

Cannabis-related episodic memory deficits and hippocampal morphological differences in healthy individuals and schizophrenia subjects.

Hippocampus 2015 Sep 11;25(9):1042-51. Epub 2015 Mar 11.

Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois.

Cannabis use has been associated with episodic memory (EM) impairments and abnormal hippocampus morphology among both healthy individuals and schizophrenia subjects. Considering the hippocampus' role in EM, research is needed to evaluate the relationship between cannabis-related hippocampal morphology and EM among healthy and clinical groups. We examined differences in hippocampus morphology between control and schizophrenia subjects with and without a past (not current) cannabis use disorder (CUD). Subjects group-matched on demographics included 44 healthy controls (CON), 10 subjects with a CUD history (CON-CUD), 28 schizophrenia subjects with no history of substance use disorders (SCZ), and 15 schizophrenia subjects with a CUD history (SCZ-CUD). Large-deformation, high-dimensional brain mapping with MRI produced surface-based representations of the hippocampus that were compared across all four groups and correlated with EM and CUD history. Surface maps of the hippocampus were generated to visualize morphological differences. CON-CUD and SCZ-CUD were characterized by distinct cannabis-related hippocampal shape differences and parametric deficits in EM performance. Shape differences observed in CON-CUD were associated with poorer EM performance, while shape differences observed in SCZ-CUD were associated with a longer duration of CUD and shorter duration of CUD remission. A past history of CUD may be associated with notable differences in hippocampal morphology and EM impairments among adults with and without schizophrenia. Although the results may be compatible with a causal hypothesis, we must consider that the observed cannabis-related shape differences in the hippocampus could also be explained as biomarkers of a neurobiological susceptibility to poor memory or the effects of cannabis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/hipo.22427DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4545387PMC
September 2015

Basal ganglia and thalamic morphology in schizophrenia and bipolar disorder.

Psychiatry Res 2014 Aug 6;223(2):75-83. Epub 2014 Jun 6.

Department of Psychiatry, Washington University School of Medicine, St. Louis, USA.

In this study, we examined the morphology of the basal ganglia and thalamus in bipolar disorder (BP), schizophrenia-spectrum disorders (SCZ-S), and healthy controls (HC) with particular interest in differences related to the absence or presence of psychosis. Volumetric and shape analyses of the basal ganglia and thalamus were performed in 33 BP individuals [12 without history of psychotic features (NPBP) and 21 with history of psychotic features (PBP)], 32 SCZ-S individuals [28 with SCZ and 4 with schizoaffective disorder], and 27 HC using FreeSurfer-initiated large deformation diffeomorphic metric mapping. Significant volume differences were found in the caudate and globus pallidus, with volumes smallest in the NPBP group. Shape abnormalities showing inward deformation of superior regions of the caudate were observed in BP (and especially in NPBP) compared with HC. Shape differences were also found in the globus pallidus and putamen when comparing BP and SCZ-S groups. No significant differences were seen in the nucleus accumbens and thalamus. In summary, structural abnormalities in the caudate and globus pallidus are present in BP and SCZ-S. Differences were more apparent in the NPBP subgroup. The findings herein highlight the potential importance of separately examining BP subgroups in neuroimaging studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pscychresns.2014.05.017DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4112520PMC
August 2014

Cannabis-related working memory deficits and associated subcortical morphological differences in healthy individuals and schizophrenia subjects.

Schizophr Bull 2014 Mar 15;40(2):287-99. Epub 2013 Dec 15.

*To whom correspondence should be addressed; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 710 N. Lake Shore Drive, 13th Floor, Abbott Hall, Chicago, IL 60611, US; tel: 1-312-503-2542, fax: 1-312-503-0527, e-mail:

Cannabis use is associated with working memory (WM) impairments; however, the relationship between cannabis use and WM neural circuitry is unclear. We examined whether a cannabis use disorder (CUD) was associated with differences in brain morphology between control subjects with and without a CUD and between schizophrenia subjects with and without a CUD, and whether these differences related to WM and CUD history. Subjects group-matched on demographics included 44 healthy controls, 10 subjects with a CUD history, 28 schizophrenia subjects with no history of substance use disorders, and 15 schizophrenia subjects with a CUD history. Large-deformation high-dimensional brain mapping with magnetic resonance imaging was used to obtain surface-based representations of the striatum, globus pallidus, and thalamus, compared across groups, and correlated with WM and CUD history. Surface maps were generated to visualize morphological differences. There were significant cannabis-related parametric decreases in WM across groups. Similar cannabis-related shape differences were observed in the striatum, globus pallidus, and thalamus in controls and schizophrenia subjects. Cannabis-related striatal and thalamic shape differences correlated with poorer WM and younger age of CUD onset in both groups. Schizophrenia subjects demonstrated cannabis-related neuroanatomical differences that were consistent and exaggerated compared with cannabis-related differences found in controls. The cross-sectional results suggest that both CUD groups were characterized by WM deficits and subcortical neuroanatomical differences. Future longitudinal studies could help determine whether cannabis use contributes to these observed shape differences or whether they are biomarkers of a vulnerability to the effects of cannabis that predate its misuse.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/schbul/sbt176DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3932091PMC
March 2014

Hippocampal shape abnormalities of patients with childhood-onset schizophrenia and their unaffected siblings.

J Am Acad Child Adolesc Psychiatry 2013 May 3;52(5):527-536.e2. Epub 2013 Apr 3.

Child Psychiatry Branch of the National Institute of Mental Health, Bethesda, MD 20892, USA.

Objective: The hippocampus has been implicated in the pathogenesis of schizophrenia, and hippocampal volume deficits have been a consistently reported abnormality, but the subregional specificity of the deficits remains unknown. The authors explored the nature and developmental trajectory of subregional shape abnormalities of the hippocampus in patients with childhood-onset schizophrenia (COS), their healthy siblings, and healthy volunteers.

Method: Two hundred twenty-five anatomic brain magnetic resonance images were obtained from 103 patients with COS, 169 from their 79 healthy siblings, and 255 from 101 age- and sex-matched healthy volunteers (age range = 9-29 years). The hippocampus was segmented using FreeSurfer automated image analysis software, and hippocampal shape was evaluated by comparing subjects at more than 6,000 vertices on the left and right hippocampal surfaces. Longitudinal data were examined using mixed model regression analysis.

Results: Patients with COS showed significant bilateral inward deformation in the anterior hippocampus. Healthy siblings also showed a trend for anterior inward deformation. However, the trajectory of shape change did not differ significantly between the groups. Inward deformations in the anterior hippocampus were positively related to positive symptom severity, whereas outward surface displacement was positively related to overall functioning.

Conclusion: This is the first and largest longitudinal three-way analysis of subregional hippocampal shape abnormalities in patients with COS and their healthy siblings compared with healthy controls. The anterior hippocampal abnormalities in COS suggest the pathophysiologic importance of this subregion in schizophrenia. The trend level and overlapping shape abnormalities in the healthy siblings suggest a more subtle, subregionally specific neuroanatomic endophenotype.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jaac.2013.02.003DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3812431PMC
May 2013

Cognitively normal individuals with AD parents may be at risk for developing aging-related cortical thinning patterns characteristic of AD.

Neuroimage 2012 Jul 5;61(3):525-32. Epub 2012 Apr 5.

Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL 60614, USA.

Children of Alzheimer's disease (AD) patients are at heightened risk of developing AD due to genetic influences, including the apolipoprotein E4 (ApoE4) allele. In this study, we assessed the earliest cortical changes associated with AD in 71 cognitively healthy, adult children of AD patients (AD offspring) as compared with 69 with no family history of AD (non-AD offspring). Cortical thickness measures were obtained using FreeSurfer from 1.5T magnetic resonance (MR) scans. ApoE genotyping was obtained. Primary analyses examined family history and ApoeE4 effects on cortical thickness. Secondary analyses examined age effects within groups. All comparisons were adjusted using False Discovery Rate at a significance threshold of p<0.05. There were no statistically significant differences between family history and ApoE4 groups. Within AD offspring, increasing age was related to reduced cortical thickness (atrophy) over large areas of the precuneus, superior frontal and superior temporal gyri, starting at around age 60. Further, these patterns existed within female and maternal AD offspring, but were absent in male and paternal AD offspring. Within non-AD offspring, negative correlations existed over small regions of the superior temporal, insula and lingual cortices. These results suggest that as AD offspring age, cortical atrophy is more prominent, particularly if the parent with AD is mother or if the AD offspring is female.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2012.03.083DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3358455PMC
July 2012
-->